136 Letters in Organic Chemistry, 2012, Vol. 9, No. 2
Yan et al.
1-tert-butyl-4-nitrobenzene 2f, [5] (Table 2, entry 6)
under mild conditions. This process provides an attractive
alternative to the traditional nitration protocol. Further
investigation of the detailed mechanism and the scope of
substrates is currently underway in our lab.
1H NMR (300 MHz, CDCl3) ꢀ = 8.13 (d, J = 9.0 Hz, 2H),
7.51 (d, J = 9.0 Hz, 2H), 1.34 (s, 9H). 13C NMR (75 MHz,
CDCl3) ꢀ = 158.8, 146.1, 126.2, 123.3, 35.4, 31.0.
1-methoxy-4-nitrobenzene 2g, [14] (Table 2, entry 7)
ACKNOWLEDGEMENT
1H NMR (300 MHz, CDCl3) ꢀ = 8.18 (d, J = 9.0 Hz, 2H),
6.93 (d, J = 9.0 Hz, 2H), 3.88 (s, 3H). 13C NMR (75 MHz,
CDCl3) ꢀ = 164.5, 141.5, 125.9, 114.0, 55.9.
We are grateful for the financial support by Lishui
University Opening Foundation for advanced talents.
1-methyl-4-nitronaphthalene 2h, [15] (Table 2, entry 8)
1H NMR (300 MHz, CDCl3) ꢀ = 8.66 (d, J = 9.0 Hz, 1H),
8.15 (q, J = 9.0 Hz, 2H), 7.77~7.65 (m, 2H), 7.40 (d, J = 9.0
Hz, 1H), 2.81(s, 3H). 13C NMR (75 MHz, CDCl3) ꢀ = 142.3,
133.1, 128.9, 127.1, 125.1, 125.0, 124.7, 124.2, 123.9, 123.6,
20.2.
CONFLICT OF INTEREST
Declared none.
REFERENCES
[1]
Muller, W. E. The Benzodiazepine Receptor; Cambridge
University Press: New York, 1988. (b) Zollinger, H. Color
Chemistry; Wiley-VCH: New York, 1987; p 161.
Feuer, H.; Nielsen, T. Nitro compounds: Recent Advances in
Synthesis and Chemistry; VCH: New York, 1990. (b) Ono, N. The
Nitro Group in Organic Synthesis; John Wiley-VCH: New York,
2001.
(a) Salzbrunn, S.; Simon, J.; Prakash, G. K. S.; Petasis, N. A.; Olah,
G. A. Regioselective nitration of arylboronic acids. Synlett. 2000,
1485-1487; (b) Prakash, G. K. S.; Panja, C.; Mathew, T.;
Surampudi, V.; Petasis, N. A.; Olah, G. A. ipso-Nitration of
arylboronic acids with chlorotrimethylsilaneꢀnitrate salts. Org.
Lett. 2004, 6, 2205-2207.
Saito, S.; Koizumi, Y. Copper-catalyzed coupling of aryl halides
and nitrite salts: a mild Ullmann-type synthesis of aromatic nitro
compounds. Tetrahedron Lett. 2005, 46, 4715-4717.
Fors, B. P.; Buchwald, S. L. Pd-catalyzed conversion of aryl
chlorides, triflates, and nonaflates to nitroaromatics. J. Am. Chem.
Soc. 2009, 131, 12898-12899.
2-nitronaphthalene 2i, [5] (Table 2, entry 9)
1H NMR (300 MHz, CDCl3) ꢀ = 8.74 (s, 1H), 8.18 (q, J =
3.0 Hz, 1H), 7.97 (d, J = 9.0 Hz, 1H), 7.90 (d, J = 9.0 Hz,
2H), 7.64 (q, J = 9.0 Hz, 2H). 13C NMR (75 MHz, CDCl3) ꢀ
= 145.4, 135.8, 131.8, 129.9, 129.7, 129.5, 128.0, 127.9,
124.6, 119.2.
[2]
[3]
1-bromo-4-nitrobenzene 2j, [13] (Table 2, entry 10)
1H NMR (300 MHz, CDCl3) ꢀ = 8.10 (d, J = 9.0 Hz, 2H),
7.69 (d, J = 9.0 Hz, 2H). 13C NMR (75 MHz, CDCl3) ꢀ =
147.4, 132.6, 130.0, 125.0.
[4]
[5]
1-chloro-4-nitrobenzene 2k, [13] (Table 2, entry 11)
1H NMR (300 MHz, CDCl3) ꢀ = 8.15 (d, J = 9.0 Hz, 2H),
7.48 (d, J = 9.0 Hz, 2H). 13C NMR (75 MHz, CDCl3) ꢀ =
146.4, 141.3, 129.5, 124.9.
[6]
[7]
Hall, D. G. Boronic Acids: Preparation, Applications in Organic
Synthesis and Medicine (Ed.), Wiley-VCH, Weinheim, 2005.
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling
reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457-
2483.
3-nitrobenzonitrile 2l, [9b] (Table 2, entry 12)
1H NMR (300 MHz, CDCl3) ꢀ = 8.53 (s, 1H), 8.48 (d, J =
6.0 Hz, 1H), 8.01 (d, J = 6.0 Hz, 1H), 7.75 (t, J = 9.0 Hz,
1H). 13C NMR (75 MHz, CDCl3) ꢀ = 148.1, 137.6, 130.7,
127.6, 127.2, 116.5, 114.0.
[8]
(a) Combs, A. P.; Saubern, S.; Rafalski, M.; Lam, P. Y. S. Solid
supported
arylheteroaryl
C-N
cross-coupling
reactions.
Tetrahedron Lett. 1999, 40, 1623-1626; (b) Lam, P. Y. S.; Clark, C.
G.; Saubern, S.; Adams, J.; Averill, K. M.; Chan, D. M. T.; Combs,
A. Copper promoted aryl/saturated heterocyclic C-N bond cross-
coupling with arylboronic acid and arylstannane. Synlett. 2000,
674-676.
4-nitrobenzaldehyde 2m, [16] (Table 2, entry 13)
1H NMR (300 MHz, CDCl3) ꢀ = 10.13 (s, 1H), 8.37 (d, J
= 9.0 Hz, 2H), 8.05 (d, J = 9.0 Hz, 2H). 13C NMR (75 MHz,
CDCl3) ꢀ = 190.4, 151.2, 140.0, 130.5, 124.3.
[9]
(a) Chu, L. L.; Qing, F. L. Influence of ꢁ-substituents in aldol
reactions of boron enolates of ꢁ-alkoxy methylketone. Org. Lett.
2010, 12, 5060-5063. (b) Liskey, C. W.; Liao, X.; Hartwig, J. F.
Cyanation of arenes via iridium-catalyzed borylation. J. Am.Chem.
Soc. 2010, 132, 11389-11391. (c) Rao, H.; Fu, H.; Jiang, Y.; Zhao,
Y. Easy copper-catalyzed synthesis of primary aromatic amines by
couplings aromatic boronic acids with aqueous ammonia at room
temperature. Angew. Chem., Int. Ed. 2009, 48, 1114-1116. (d)
Shade, R. E.; Alan, M.; Hyde, A. M.; Olsen, J.-C.; Merlic, C. A.
Copper-promoted coupling of vinyl boronates and alcohols: a mild
synthesis of allyl vinyl ethers. J. Am. Chem. Soc. 2010, 132, 1202-
1203. (e) Kar, A.; Sayyed, I. A.; Lo, W. F.; Kaiser, H. M.; Beller,
M.; Tse, M. K. A general copper-catalyzed sulfonylation of
arylboronic acids. Org. Lett. 2007, 9, 3405-3408. (f) Wu, H.;
Hynes, Jr. J. Copper-catalyzed chlorination of functionalized
arylboronic acids. Org. Lett. 2010, 12, 1192-1195. (g) Zhuang, R.
G.; Xu, J.; Cai, Z. S.; Tang, G.; Fang, M. J.; Zhao, Y. F. Copper-
catalyzed CꢀP bond construction via direct coupling of
phenylboronic acids with H-phosphonate diesters. Org. Lett. 2011,
13, 2110-2113.
methyl 4-nitrobenzoate 2n, [5] (Table 2, entry 14)
1H NMR (300 MHz, CDCl3) ꢀ = 8.28 (d, J = 9.0 Hz, 2H),
8.20 (d, J = 9.0 Hz, 2H). 13C NMR (75 MHz, CDCl3) ꢀ =
165.4, 150.7, 135.4, 130.8, 123.8, 52.8.
1-(trifluoromethyl)-4-nitrobenzene 2o, [11] (Table 2, entry
15)
1H NMR (300 MHz, CDCl3) ꢀ = 8.37(d, J = 6.0 Hz, 2H),
7.85 (d, J = 6.0 Hz, 2H). 13C NMR (75 MHz, CDCl3) ꢀ =
150.0, 136.3, 135.8, 126.8, 126.8, 126.7, 126.7, 124.7, 124.0,
121.1, 119.0.
CONCLUSION
[10]
[11]
Niu, J. J.; Zhou, H.; Li, Z. G.; Xu, J. W.; Hu, S. J. An efficient
Ullmann-type CꢀO bond formation catalyzed by an air-stable
copper(I)-bipyridyl complex. J. Org. Chem. 2008, 73, 7814-7817.
Reddy, K. R.; Maheswari, C. U.; Venkateshwar, M.; Kantam, M.
L. Selective oxidation of aromatic amines to nitro derivatives using
In summary, we have developed a new, simple, efficient
approach to the synthesis of nitroaromatics by copper-
catalyzed coupling of arylboronic acids with nitrite salts