The Journal of Physical Chemistry A
Article
synthesized by combining a weaker acid and a weaker base,
where a certain concentration of parent acid and base molecules
are expected to coexist in neat protic ILs at room temperature.
Then, the acid and base molecules are evaporable without
heating neat PIL, which corresponds to examples of [H-
MIM][AcO] and [H-TEA][AcO]. Higher ΔpKa PILs prepared
by a stronger acid and a stronger base and the equilibrium
between acid−base and anion−cation pairs shifts to the anion−
cation pair side in the liquid, where less concentration of parent
molecules exist in the liquid at room temperature. With
increasing temperature, the acid and base concentration
increases in the liquid and then they are vaporized at a
temperature lower than that of ion-pair vaporization, which
corresponds to an example of [H-MIM][Tf2N]. Much higher
ΔpKa PILs are prepared by combining a strong acid and a
strong base, where the concentration of deprotonated acid and
protonated base dominates in the liquid. The parent acid and
base do not exist in the liquid at the temperature of the PIL
vaporization. As a result, the corresponding acid and base
vanishingly exist in the gaseous component, and then the PILs
with high ΔpKa behave like aprotic ILs vaporizing to be ion
pairs. This hypothesis may be confirmed by the temperature-
dependent experimental result for [H-TEA][Tf2N] as shown in
Figure 6, where the parent molecules were observed at higher
temperature, 433 K. This indicates that the population of the
parent molecules may be negligible in the liquid at 388 K but
increases with temperature to the extent that the detectable acid
and base molecules are evaporated from the neat PIL liquid at
433 K.
REFERENCES
■
(1) Earle, M. J.; Esperanca, J.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L.
P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Distillation and
Volatility of Ionic Liquids. Nature (London, U.K.) 2006, 439, 831−834.
(2) Gross, J. H. Molecular Ions of Ionic Liquids in the Gas Phase. J.
Am. Soc. Mass Spectrom. 2008, 19, 1347−1352.
(3) Leal, J. P.; Esperanca, J.; da Piedade, M. E.M.; Lopes, J. N. C.;
Rebelo, L. P. N.; Seddon, K. R. The Nature of Ionic Liquids in the Gas
Phase. J. Phys. Chem. A 2007, 111, 6176−6182.
(4) Armstrong, J. P.; Hurst, C.; Jones, R. G.; Licence, P.; Lovelock, K.
R. J.; Satterley, C. J.; Villar-Garcia, I. J. Vapourisation of Ionic Liquids.
Phys. Chem. Chem. Phys. 2007, 9, 982−990.
(5) Deyko, A.; Lovelock, K. R. J.; Licence, P.; Jones, R. G. The
vapour of imidazolium-based ionic liquids: A mass spectrometry study.
Phys. Chem. Chem. Phys. 2011, 13, 16841−16850.
(6) Neto, B. A. D.; Meurer, E. C.; Galaverna, R.; Bythell, B. J.;
Dupont, J.; Cooks, R. G.; Eberlin, M. N. Vapors from Ionic Liquids:
Reconciling Simulations with Mass Spectrometric Data. J. Phys. Chem.
Lett. 2012, 3, 3435−3441.
(7) Akai, N.; Kawai, A.; Shibuya, K. First observation of the matrix-
isolated FTIR spectrum of vaporized ionic liquid: An example of
e m i m T F S I , 1 - E t h y l - 3 - m e t h y l i m i d a z o l i u m b i s -
(trifluoromethanesulfonyl)imide. Chem. Lett. 2008, 37, 256−257.
(8) Akai, N.; Parazs, D.; Kawai, A.; Shibuya, K. Cryogenic neon
matrix-isolation FTIR spectroscopy of evaporated ionic liquids:
Geometrical structure of cation−anion 1:1 pair in the gas phase. J.
Phys. Chem. B 2009, 113, 4756−4762.
(9) Strasser, D.; Goulay, F.; Belau, L.; Kostko, O.; Koh, C.;
Chambreau, S. D.; Vaghjiani, G. L.; Ahmed, M.; Leone, S. R. Tunable
Wavelength Soft Photoionization of Ionic Liquid Vapors. J. Phys.
Chem. A 2010, 114, 879−883.
(10) Chambreau, S. D.; Vaghjiani, G. L.; To, A.; Koh, C.; Strasser, D.;
Kostko, O.; Leone, S. R. Heats of Vaporization of Room Temperature
Ionic Liquids by Tunable Vacuum Ultraviolet Photoionization. J. Phys.
Chem. B 2010, 114, 1361−1367.
CONCLUSION
■
Several kinds of PILs with various ΔpKa values synthesized by
combinations of three acids and three bases were investigated
by matrix-isolation IR spectroscopy with the aid of DFT
calculations. When matrix spectra of the PILs are compared
with those of the corresponding parent acid and base
molecules, the three PILs of [H-MIM][AcO], [H-TEA][AcO],
and [H-MIM][Tf2N] are evaporated to be the corresponding
parent acids and bases while [H-TEA][OTf], [H-TEA][Tf2N],
and [H-TMG][Tf2N] exist to form ion-pair structures in the
gas phases. This classification is related to their ΔpKa values.
While the lower ΔpKa PILs vaporize to become the parent
Brønsted acids and bases as well as the previous suggestions,3
the PILs with higher ΔpKa form an ion-pair structure in the gas
phase similar to that of the well-known vaporization of aprotic
ILs.
(11) Wang, C.; Luo, H.; Li, H.; Dai, S. Direct UV-spectroscopic
measurement of selected ionic-liquid vapors. Phys. Chem. Chem. Phys.
2010, 12, 7264−7250.
(12) Akai, N.; Kawai, A.; Shibuya, K. Ion-Pair Structure of Vaporized
Ionic Liquid Studied by Matrix-Isolation FTIR Spectroscopy with
DFT Calculation: A Case of 1-Ethyl-3-methylimidazolium Trifluor-
omethanesulfonate. J. Phys. Chem. A 2010, 114, 12662−12666.
(13) Ogura, T.; Akai, N.; Kawai, A.; Shibuya, K. Gas phase electronic
absorption spectroscopy of room temperature ionic liquids: N-Ethyl-3-
methylpyridinium or 1-butyl-3-methylimidazolium cation with bis-
(trifluoromethylsulfonyl)amido anion. Chem. Phys. Lett. 2013, 555,
110−114.
(14) Dong, K.; Zhao, L.; Wang, Q.; Song, Y.; Zhang, S. Are ionic
liquids pairwise in gas phase? A cluster approach and in situ IR study.
Phys. Chem. Chem. Phys. 2013, 15, 6034−6040.
(15) Obi, E. I.; Leavitt, C. M.; Raston, P. L.; Moradi, C. P.; Flynn, S.
D.; Vaghjiani, G. L.; Boatz, J. A.; Chambreau, S. D.; Douberly, G. E.
Helium Nanodroplet Isolation and Infrared Spectroscopy of the
Isolated Ion-Pair 1-Ethyl-3-methylimidazolium bis(trifluoromethyl-
sulfonyl)imide. J. Phys. Chem. A 2013, 117, 9047−9056.
(16) Kelkar, M. S.; Maginn, E. J. Calculating the Enthalpy of
Vaporization for Ionic Liquid Clusters. J. Phys. Chem. B 2007, 111,
9424−9427.
(17) Rai, N.; Maginn, E. J. Vapor−Liquid Coexistence and Critical
Behavior of Ionic Liquids via Molecular Simulations. J. Phys. Chem.
Lett. 2011, 2, 1439−1443.
(18) Chaban, V. V.; Prezhdo, O. V. Ionic Vapor: What Does It
Consist Of? J. Phys. Chem. Lett. 2012, 3, 1657−1662.
ASSOCIATED CONTENT
* Supporting Information
Full description of calculated results. This material is available
■
S
AUTHOR INFORMATION
Corresponding Author
■
*.
Notes
The authors declare no competing financial interest.
(19) Malberg, F.; Pensado, A. S.; Kirchner, B. The bulk and the gas
phase of 1-ethylimidazolium ethylsulfate: Dispersion interaction makes
the difference. Phys. Chem. Chem. Phys. 2012, 14, 12079−12082.
(20) Paulechka, Y. U.; Zaitsau, Dz. H.; Kabo, G. J.; Strechan, A. A.
Vapor pressure and thermal stability of ionic liquid 1-butyl-3-
ACKNOWLEDGMENTS
■
This work was financially supported in part by Grant-in-Aid for
Scientific Research 24750013 and 24350004 from the Ministry
of Education, Culture, Sports, Science and Technology, Japan.
3286
dx.doi.org/10.1021/jp501784w | J. Phys. Chem. A 2014, 118, 3280−3287