Angewandte Chemie International Edition
10.1002/anie.201900850
COMMUNICATION
puromycin in vitro and in HeLa cells (Figure S15B) and
Keywords: BODIPY • photocages • organelles • photo-release •
colocalized efficiently with ER-tracker blue (r = 0.95, Figure S16C).
mitochondria
Following photoactivation of 19 in live cells (20 µM, 545/305 nm,
2
4
2 mW/cm ), released puromycin could be detected specifically
[1]
aD. J. Maly, F. R. Papa, Nat. Chem. Biol. 2014, 10, 892-901; bS.
Piao, R. K. Amaravadi, Ann. NY Acad. Sci. 2016, 1371, 45-54; cN.
M. Sakhrani, H. Padh, Drug Des. Devel. Ther. 2013, 7, 585-599; dS.
E. Weinberg, N. S. Chandel, Nat. Chem. Biol. 2015, 11, 9-15.
J. H. Kaplan, B. Forbush, 3rd, J. F. Hoffman, Biochemistry 1978, 17,
in the ER, unlike treatment with free puromycin that was detected
throughout the cell (ER, cytoplasm, nucleus), as visualized by
immunostaining (Figure 16E).
[2]
1
929-1935.
In summary, we developed a set of BODIPY photocages suitable
for visible-light-mediated release of bioactive molecules in
specific, pre-designated organelles. We have established a post-
synthetic procedure to straightforwardly introduce conjugatable
functional groups onto BODIPY α -methyl in one synthetic step
and without compromising their spectroscopic nor photoreaction
properties. This procedure represents a unique post-synthetic
functionalization method applicable to BODIPYs at large,
providing a simple and effective solution to the traditional
[
3]
4]
aC. W. Riggsbee, A. Deiters, Trends Biotechnol. 2010, 28, 468-475;
bQ. Shao, B. Xing, Chem. Soc. Rev. 2010, 39, 2835-2846.
[
aL. Fournier, C. Gauron, L. Xu, I. Aujard, T. Le Saux, N. Gagey-
Eilstein, S. Maurin, S. Dubruille, J. B. Baudin, D. Bensimon, M.
Volovitch, S. Vriz, L. Jullien, ACS. Chem. Biol. 2013, 8, 1528-1536;
bR. R. Nani, A. P. Gorka, T. Nagaya, H. Kobayashi, M. J.
Schnermann, Angew. Chem. Int. Ed. 2015, 54, 13635-13638.
aA. T. Hoye, J. E. Davoren, P. Wipf, M. P. Fink, V. E. Kagan,
Acc.Chem. Res. 2008, 41, 87-97; bS. Wisnovsky, E. K. Lei, S. R.
Jean, S. O. Kelley, Cell Chem. Biol. 2016, 23, 917-927.
[
5]
6]
[
aH. Xiao, P. Li, X. Hu, X. Shi, W. Zhang, B. Tang, Chem. Sci. 2016,
7
, 6153-6159; bH. Xiao, X. Liu, C. Wu, Y. Wu, P. Li, X. Guo, B. Tang,
challenge of BODIPY functionalization, usually requiring multi-
step processes[16]. Thus, not only it should provide access to
Biosens. Bioelectron. 2017, 91, 449-455.
[7]
aC. A. Goodman, P. Pierre, T. A. Hornberger, Proc Natl Acad Sci U
S A 2012, 109, E989; author reply E990; bT. Liu, Z. Xu, D. R. Spring,
J. Cui, Org. Lett. 2013, 15, 2310-2313.
conjugation of BODIPY photocages to other small- or macro-
molecules, it also uniquely represents a simple path to direct
activation and further (bio-)conjugation of BODIPYs when used
as fluorescent tags. The developed procedure was applied to
generate a set of organelle targeted BODIPY photocages in a
divergent manner. All organelle-targeted BODIPY photocages
efficiently localized to their pre-designated sub-cellular
[
8]
9]
aS. Chalmers, S. T. Caldwell, C. Quin, T. A. Prime, A. M. James, A.
G. Cairns, M. P. Murphy, J. G. McCarron, R. C. Hartley, J. Am.
Chem. Soc. 2012, 134, 758-761; bA. Leonidova, V. Pierroz, R.
Rubbiani, Y. J. Lan, A. G. Schmitz, A. Kaech, R. K. O. Sigel, S.
Ferrari, G. Gasser, Chemical Science 2014, 5, 4044-4056.
aA. Nadler, D. A. Yushchenko, R. Muller, F. Stein, S. Feng, C. Mulle,
M. Carta, C. Schultz, Nat Commun 2015, 6, 10056; bN. Wagner, M.
Stephan, D. Hoglinger, A. Nadler, Angew. Chem. Int. Ed. 2018; cS.
Feng, T. Harayama, S. Montessuit, F. P. David, N. Winssinger, J. C.
Martinou, H. Riezman, Elife 2018, 7.
[
compartments.
A
mitochondria-targeted
BODIPY
was
demonstrated to release the protonophore DNP in live cells with
exquisite spatio-temporal control, achieving a much higher effect
compared to non-targeted DNP. Thus, not only that photocaging
introduces spatio-temporal specificity to organelle targeting, it
additionally leads to higher efficacy of the bioactive molecule,
most probably due to localized and abrupt release. Finally, we
expect that our approach could be extended to selective delivery
of a wide range of bioactive molecules to diverse organelles in
order to perturb and study their localized processes and functions.
The use of BODIPY provide access to photoactivation with
biologically benign visible-light thus eliminating concerns of
phototoxicity associated with traditional UV excitable photocages
and, potentially, opening the way to organelle-targeted light-
mediated drug delivery.
[10]
aP. P. Goswami, A. Syed, C. L. Beck, T. R. Albright, K. M. Mahoney,
R. Unash, E. A. Smith, A. H. Winter, J. Am. Chem. Soc. 2015, 137,
3
783-3786; bN. Rubinstein, P. Liu, E. W. Miller, R. Weinstain,
Chem. Commun. (Camb) 2015, 51, 6369-6372; cK. Sitkowska, B. L.
Feringa, W. Szymanski, J. Org. Chem. 2018, 83, 1819-1827; dT.
Slanina, P. Shrestha, E. Palao, D. Kand, J. A. Peterson, A. S.
Dutton, N. Rubinstein, R. Weinstain, A. H. Winter, P. Klan, J. Am.
Chem. Soc. 2017, 139, 15168-15175.
P. Klan, T. Solomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina,
V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119-191.
G. Ulrich, R. Ziessel, A. Haefele, J. Org. Chem. 2012, 77, 4298-
[11]
[12]
4
311.
[
13]
14]
aJ. E. Bestman, K. D. Stackley, J. J. Rahn, T. J. Williamson, S. S.
Chan, Differentiation 2015, 89, 51-69; bG. B. Pinchot, J. Biol. Chem.
1967, 242, 4577-4583.
[
aG. Annamalai, S. Kathiresan, N. Kannappan, Biomed.
Pharmacother. 2016, 82, 226-236; bG. Duan, S. Hou, J. Ji, B. Deng,
Cancer Biomark. 2018, 22, 29-34; cY. Y. Lu, T. S. Chen, J. L. Qu,
W. L. Pan, L. Sun, X. B. Wei, J. Biomed. Sci. 2009, 16, 16.
aF. Buhr, J. Kohl-Landgraf, S. tom Dieck, C. Hanus, D. Chatterjee,
A. Hegelein, E. M. Schuman, J. Wachtveitl, H. Schwalbe, Angew.
Chem. Int. Ed. 2015, 54, 3717-3721; bI. Elamri, M. Heumuller, L. M.
Herzig, E. Stirnal, J. Wachtveitl, E. M. Schuman, H. Schwalbe,
Chembiochem 2018, 19, 2458-2464; cL. M. Herzig, I. Elamri, H.
Schwalbe, J. Wachtveitl, Phys Chem Chem Phys 2017, 19, 14835-
[15]
Acknowledgements
1
4844; dJ. Kohl-Landgraf, F. Buhr, D. Lefrancois, J. M. Mewes, H.
WR would like to thank the United States-Israel Binational
Science Foundation (Grant No. 2016060), the Germany-Israel
Foundation (Grant No. I-2387-302.5/2015) and the ERC (Grant
No. 679189), and D. F. M. to the Israeli Science Foundation
Schwalbe, A. Dreuw, J. Wachtveitl, J. Am. Chem. Soc. 2014, 136,
3430-3438.
aN. Boens, B. Verbelen, W. Dehaen, Eur. J. Org. Chem. 2015,
[16]
2
015, 6577-6595; bA. Loudet, K. Burgess, Chem. Rev. 2007, 107,
4891-4932; cH. Wang, F. R. Fronczek, M. G. Vicente, K. M. Smith,
J. Org. Chem. 2014, 79, 10342-10352.
(1310/15), for funding this research. D.K. thanks the Planning and
Budgeting Committee (PBC) of the Israeli Council for Higher
Education for a postdoctoral fellowship. We would like to thank
Prof. Evan W. Miller (UC Berkeley) for helpful discussions.
This article is protected by copyright. All rights reserved.