10.1002/cbic.202000306
ChemBioChem
COMMUNICATION
this artificial metalloenzyme can provide a platform for a range of
different, currently unexplored, metal-catalyzed reactions. We
believe that HQAla, together with other known metal-binding
ncAAs, open up the way for a variety of (new-to-nature)
biotransformations.
Sci. 2017, 8, 7228–7235; g) N. Ségaud, I. Drienovská, J. Chen, W. R.
Browne, G. Roelfes, Inorg. Chem. 2017, 56, 13293–13299; h) M.
Bersellini, G. Roelfes, Org. Biomol. Chem. 2017, 15, 3069–3073.
a) A. P. Green, T. Hayashi, P. R. E. Mittl, D. Hilvert, J. Am. Chem.
Soc. 2016, 138, 11344–11352; b) M. Pott, T. Hayashi, T. Mori, P. R.
E. Mittl, A. P. Green, D. Hilvert, J. Am. Chem. Soc. 2018, 140, 1535–
1543; c) T. Hayashi, M. Tinzl, T. Mori, U. Krengel, J. Proppe, J.
Soetbeer, D. Klose, G. Jeschke, M. Reiher, D. Hilvert, Nat. Catal.
2018, 1, 578–584; d) A. K. Bhagat, H. Buium, G. Shmul, L. Alfonta,
ACS Catal. 2020, 3094–3102.
[7]
Acknowledgements
This work was supported by the Netherlands Organization for
Scientific Research (NWO, vici grant 724.013.003) and the
European Research Council (ERC starting grant 280010). GR
acknowledges support from the Netherlands Ministry of Education,
Culture and Science (Gravitation program no. 024.001.035). The
authors thank Prof. P. G. Schultz (The Scripps Research Institute,
USA) for kindly providing the pEVOL_HQAla plasmid and Ruben
Maaskant for useful suggestions and discussion regarding the
synthesis of HQAla.
[8]
[9]
J. P. Phillips, Chem. Rev. 1956, 56, 271–297; b) R. Ugo, G. La
Monica, S. Cenini, F. Bonati, J. Organomet. Chem. 1968, 11, 159–
166.
a) F. Wu, H. Li, J. Xie, Appl. Organomet. Chem. 2020, 34, e5303; b)
M. Kondo, T. Kochi, F. Kakiuchi, J. Am. Chem. Soc. 2011, 133, 32–
34; c) K. Sakai, T. Kochi, F. Kakiuchi, Org. Lett. 2013, 15, 1024–1027;
d) F. Kakiuchi, S. Takano, T. Kochi, ACS Catal. 2018, 8, 6127–6137;
e) A. C. Brooks, K. Basore, S. Bernhard, Chem. Commun. 2014, 50,
5196–5199.
[10]
[11]
H. S. Lee, G. Spraggon, P. G. Schultz, F. Wang, J. Am. Chem. Soc.
2009, 131, 2481–2483.
X. Liu, J. Li, C. Hu, Q. Zhou, W. Zhang, M. Hu, J. Zhou, J. Wang,
Angew. Chem. Int. Ed. 2013, 52, 4805–4809, Angew.
Chem. 2013, 125, 4905– 4909.
Keywords: non-canonical amino acids
•
biocatalysis
•
metalloenzymes • hybrid catalyts • protein design
[12]
[13]
G. Roelfes, Acc. Chem. Res. 2019, 52, 545–556.
I. Drienovská, C. Mayer, C. Dulson, G. Roelfes, Nat. Chem. 2018, 10,
946–952.
[1]
[2]
Y. Lu, N. Yeung, N. Sieracki, N. M. Marshall, Nature 2009, 460, 855-
862.
[14]
[15]
J. Bos, A. García-Herraiz, G. Roelfes, Chem. Sci. 2013, 4, 3578-3582.
a) V. B. Kenche, I. Zawisza, C. L. Masters, W. Bal, K. J. Barnham, S.
C. Drew, Inorg. Chem. 2013, 52, 4303–4318; b) C. Sgarlata, G. Arena,
R. P. Bonomo, A. Giuffrida, G. Tabbì, J. Inorg. Biochem. 2018, 180,
89–100.
a) I. Drienovská, G. Roelfes, Isr. J. Chem. 2015, 55, 21–31; b) F.
Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M. M. Pellizzoni, V. Lebrun,
R. Reuter, V. Köhler, J. C. Lewis, T. R. Ward, Chem. Rev. 2018, 118,
142–231.
[16]
a) M. Mameli, M. C. Aragoni, M. Arca, C. Caltagirone, F. Demartin, G.
Farruggia, G. De Filippo, F. A. Devillanova, A. Garau, F. Isaia, et al.,
Chem. - A Eur. J. 2010, 16, 919–930; b) V. Oliveri, A. Puglisi, M. Viale,
C. Aiello, C. Sgarlata, G. Vecchio, J. Clarke, J. Milton, J. Spencer,
Chem. - A Eur. J. 2013, 19, 13946–13955; c) V. Oliveri, G. I. Grasso,
F. Bellia, F. Attanasio, M. Viale, G. Vecchio, Inorg. Chem. 2015, 54,
2591–2602.
[3]
[4]
H. J. Davis, T. R. Ward, ACS Cent. Sci. 2019, 5, 1120–1136.
a) H. Yang, P. Srivastava, C. Zhang, J. C. Lewis, ChemBioChem
2014, 15, 223–227; b) C. Zhang, P. Srivastava, K. Ellis-Guardiola, J.
C. Lewis, Tetrahedron 2014, 70, 4245–4249; c) P. Srivastava, H.
Yang, K. Ellis-Guardiola, J. C. Lewis, R. R. Knowles, E. N. Jacobsen,
C. A. Lewis, M. P. Weberski, S. Das, C. D. Incarvito, et al., Nat.
Commun. 2015, 6, 7789; d) J. C. Lewis, Curr. Opin. Chem. Biol. 2015,
25, 27–35; d) F. Agostini, J. S. Völler, B. Koksch, C. G. Acevedo-
Rocha, V. Kubyshkin, N. Budisa, Angew. Chem. Int. Ed. 2017, 56,
9680–9703, Angew. Chem. 2017, 129, 9810– 9835.
[17]
a) J. A. Laureanti, G. W. Buchko, S. Katipamula, Q. Su, J. C. Linehan,
O. A. Zadvornyy, J. W. Peters, M. O’Hagan, ACS Catal. 2019, 9, 620–
625; b) J. A. Laureanti, B. Ginovska, G. W. Buchko, G. K. Schenter,
M. Hebert, O. A. Zadvornyy, J. W. Peters, W. J. Shaw,
Organometallics 2020, 39, 1532-1544.
[5]
[6]
a) T. Hayashi, D. Hilvert, A. P. Green, Chem. – A Eur. J. 2018, 24,
11821–11830; b) Y. Yu, C. Hu, L. Xia, J. Wang, ACS Catal. 2018, 8,
1851–1863; c) I. Drienovská, G. Roelfes, Nat. Catal. 2020, 3, 193–
202.
[18]
[19]
[20]
T. K. Hyster, L. Knörr, T. R. Ward, T. Rovis, Science 2012, 338, 500–
503.
a) I. L. Alberts, K. Nadassy, S. J. Wodak, Protein Sci. 1998, 7, 1700–
1716; b) J. Weston, Chem. Rev. 2005, 105, 2151–2174.
a) D. A. Evans, K. R. Fandrick, H.-J. Song, J. Am. Chem. Soc. 2005,
127, 8942–8943. b) A. J. Boersma, B. L. Feringa, G. Roelfes, Angew.
Chem. Int. Ed. 2009, 48, 3346–3348, Angew. Chem. 2009, 121,
3396–3398; c) J. Bos, W. R. Browne, A. J. M. Driessen, G. Roelfes,
J. Am. Chem. Soc. 2015, 137, 9796–9799.
J. Xie, W. Liu, P. G. Schultz, Angew. Chem. Int. Ed. 2007, 46, 9239–
9242, Angew. Chem. 2007, 119, 9399– 9402; b) H. S. Lee, P. G.
Schultz, J. Am. Chem. Soc. 2008, 130, 13194–13195; c) J. H. Mills,
S. D. Khare, J. M. Bolduc, F. Forouhar, V. K. Mulligan, S. Lew, J.
Seetharaman, L. Tong, B. L. Stoddard, D. Baker, J. Am. Chem. Soc.
2013, 135, 13393–13399; d) J. H. Mills, W. Sheffler, M. E. Ener, P. J.
Almhjell, G. Oberdorfer, J. H. Pereira, F. Parmeggiani, B. Sankaran,
P. H. Zwart, D. Baker, Proc. Natl. Acad. Sci. USA. 2016, 113, 15012–
15017; e) I. Drienovská, A. Rioz-Martinez, A. Draksharapu, G.
Roelfes, Chem. Sci. 2015, 6, 770–776; f) I. Drienovská, L. Alonso-
Cotchico, P. Vidossich, A. Lledós, J.-D. Maréchal, G. Roelfes, Chem.
[21]
A. J. Boersma, D. Coquière, D. Geerdink, F. Rosati, B. L. Feringa, G.
Roelfes, Nat. Chem. 2010, 2, 991–995.
4
This article is protected by copyright. All rights reserved.