2748
P. Thongpoo et al. / Biochimica et Biophysica Acta 1830 (2013) 2739–2749
[6] D.J. Vocadlo, C. Mayer, S. He, S.G. Withers, Mechanism of action and identification of
Asp242 as the catalytic nucleophile of Vibrio furnisii N-acetyl-β-D-glucosaminidase
using 2-acetamido-2-deoxy-5-fluoro-alpha-L-idopyranosyl fluoride, Biochemistry
39 (2000) 117–126.
[7] D.L. Zechel, S.G. Withers, Glycosidase mechanisms: anatomy of a finely tuned catalyst,
Acc. Chem. Res. 33 (1999) 11–18.
[8] M.L. Sinnott, Catalytic mechanism of enzymic glycosyl transfer, Chem. Rev. 90
(1990) 1171–1202.
[9] G.J. Davies, M.L. Sinnott, Sorting the diverse: the sequence-based classifications of
[10] M. Hrmova, J.N. Varghese, R. De Gori, B.J. Smith, H. Driguez, G.B. Fincher, Catalytic
mechanisms and reaction intermediates along the hydrolytic pathway of a plant
β-D-glucan glucohydrolase, Structure 9 (2001) 1005–1016.
[11] S. Dan, I. Marton, M. Dekel, B.A. Bravdo, S. He, S.G. Withers, O. Shoseyov, Cloning
expression characterization and nucleophile identification of family 3, Aspergillus
niger β-glucosidase, J. Biol. Chem. 275 (2000) 4973–4980.
[12] K. Paal, M. Ito, S.G. Withers, Paenibacillus sp. TS12 glucosylceramidase: kinetic
studies of a novel sub-family of family 3 glycosidases and identification of the
catalytic residues, Biochem. J. 378 (2004) 141–149.
[13] S. Litzinger, S. Fischer, P. Polzer, K. Diederichs, W. Welte, C. Mayer, Structural and
kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp–His
dyad mechanism, J. Biol. Chem. 285 (2010) 35675–35684.
[14] T. Pozzo, J.L. Pasten, E.N. Karlsson, D.T. Logan, Structural and functional analyses
of β-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain
representative of glycoside hydrolase 3, J. Mol. Biol. 397 (2010) 724–739.
[15] J.N. Varghese, M. Hrmova, G.B. Fincher, Three-dimensional structure of a barley
β-D-glucan exohydrolase, a family 3 glycosyl hydrolase, Structure 7 (1999) 179–190.
[16] E. Yoshida, M. Hidaka, S. Fushinobu, T. Koyanagi, H. Minami, H. Tamaki, M.
Kitaoka, T. Katayama, H. Kumagai, Role of
substrate specificity of glycoside hydrolase family
Kluyveromyces marxianus, Biochem. J. 431 (2010) 39–49.
a
PA14 domain in determining
a
3
β-glucosidase from
[17] J. Chir, S. Withers, C.F. Wan, Y.K. Li, Identification of the two essential groups in
the family 3 β-glucosidase from Flavobacterium meningosepticum by labelling
and tandem mass spectrometric analysis, Biochem. J. 365 (2002) 857–863.
[18] H. Li, G. Zhao, H. Miyake, H. Umekawa, T. Kimura, K. Ohmiya, K. Sakka, Identification
of a catalytic residue of Clostridium paraputrificum N-acetyl-β-D-glucosaminidase
Nag3A by site-directed mutagenesis, Biosci. Biotechnol. Biochem. 70 (2006)
1127–1133.
[19] J.-P. Bacik, G.E. Whitworth, K.A. Stubbs, D.J. Vocadlo, B.L. Mark, Active Site Plastic-
ity within the Glycoside Hydrolase NagZ Underlies a Dynamic Mechanism of Sub-
strate Distortion, Chem. Biol. 19 (2012) 1471–1482.
[20] J. van den Brink, R.P. de Vries, Fungal enzyme sets for plant polysaccharide degra-
dation, Appl. Microbiol. Biotechnol. 91 (2011) 1477–1492.
[21] M.H. Jaime Eyzaguirre, A. Leschot, β-Glucosidases from filamentous fungi: properties
structure and applications, in: K.J. Yarema (Ed.), Handbook of Carbohydrate Engi-
neering, CRC Press, Florida, 2005, pp. 645–685.
[22] H.J. Pel, J.H. de Winde, D.B. Archer, P.S. Dyer, G. Hofmann, P.J. Schaap, G. Turner, R.P.
de Vries, R. Albang, K. Albermann, M.R. Andersen, J.D. Bendtsen, J.A.E. Benen, M. van
den Berg, S. Breestraat, M.X. Caddick, R. Contreras, M. Cornell, P.M. Coutinho, E.G.J.
Danchin, A.J.M. Debets, P. Dekker, P.W.M. van Dijck, A. van Dijk, L. Dijkhuizen,
A.J.M. Driessen, C. d'Enfert, S. Geysens, C. Goosen, G.S.P. Groot, P.W.J. de Groot, T.
Guillemette, B. Henrissat, M. Herweijer, J.P.T.W. van den Hombergh, C.A.M.J.J. van
den Hondel, R.T.J.M. van der Heijden, R.M. van der Kaaij, F.M. Klis, H.J. Kools, C.P.
Kubicek, P.A. van Kuyk, J. Lauber, X. Lu, M.J.E.C. van der Maarel, R. Meulenberg, H.
Menke, M.A. Mortimer, J. Nielsen, S.G. Oliver, M. Olsthoorn, K. Pal, N.N.M.E. van
Peij, A.F.J. Ram, U. Rinas, J.A. Roubos, C.M.J. Sagt, M. Schmoll, J. Sun, D. Ussery, J.
Varga, W. Vervecken, P.J.J. van de Vondervoort, H. Wedler, H.A.B. Wosten, A.-P.
Zeng, A.J.J. van Ooyen, J. Visser, H. Stam, Genome sequencing and analysis of the ver-
satile cell factory Aspergillus niger CBS 513.88, Nat. Biotechnol. 25 (2007) 221–231.
[23] C. Bohlin, E. Praestgaard,M. Baumann, K. Borch, J. Praestgaard, R.Monrad, P.Westh,
A comparative study of hydrolysis and transglycosylation activities of fungal
1007/s00253-012-3875-9.
[24] H.F. Seidle, K. McKenzie, I. Marten, O. Shoseyov, R.E. Huber, Trp-262 is a key
residue for the hydrolytic and transglucosidic reactivity of the Aspergillus niger family
3 β-glucosidase: Substitution results in enzymes with mainly transglucosidic activity,
Arch. Biochem. Biophys. 444 (2005) 66–75.
[25] H.F. Seidle, S.J. Allison, E. George, R.E. Huber, Trp-49 of the family 3 β-glucosidase
from Aspergillus niger is important for its transglucosidic activity: creation of
novel β-glucosidases with low transglucosidic efficiencies, Arch. Biochem.
Biophys. 455 (2006) 110–118.
Fig. 6. Manual alignment of partial sequences of GH3 subfamily 4 members including
subfamily 1 and 5 members with identified catalytic acid/base residues. The conserved
glutamic residues are shown as white letters against black background, except for those
that have been experimentally determined previously, which are highlighted in gray.
Full species names and Genbank IDs of the enzymes are as follows, Aspergillus niger
ASKU28 β-glucosidase, JX127252 (this study); A. niger_1 β-glucosidase, CAB75696.1;
A. niger_2 β-glucosidase bglI, CAK48740.1; A. aculeatus β-glucosidase precursor,
BAA10968.1; A. kawachii β-glucosidase, BAA19913.1; Coccidioides posadasii_1 β-
glucosidase, AAB67972.1; C. Posadasii_2 β-glucosidase precursor, AAF21242.1; Cochliobolus
heterostrophus β glucosidase homolog, AAB84005.1; Phaeosphaeria avenaria β-glucosidase,
CAB82861.1; Phanerochaete chrysosporium β-glucosidase, BAB85988.1; Saccharomycopsis
fibuligera_1 β-glucosidase 1 precursor, AAA34314.1; S. fibuligera_2 β-glucosidase 2 precursor,
AAA34315.1; Septoria lycopersici β-1,2-D-glucosidase, AAB08445.1; Trichoderma reesei
β-D-glucoside glucohydrolase, AAA18473.1; Flavobacterium meningosepticum β-glucosidase,
AAB66561.1; Kluyveromyces marxianus KmBglI, ACY95404.1; Paenibacillus sp. TS12
glucosylceramidase, BAC16750.1; Thermotoga neapolitana Bgl3B, ABI29899.1; Hordeum
vulgare ExoI, AAD23382.1.
Carbohydrate Materials Consortium”) and L.S.M. was supported by the
Knut & Alice Wallenberg Foundation (via the Wallenberg Wood Science
Centre). Additional funding from the Michael Smith Laboratories, the
National Research Council of Thailand and the Office of the Higher Edu-
cation Commission, Thailand, is gratefully acknowledged.
Appendix A. Supplementary data
Supplementary data to this article can be found online at http://
References
[26] C. Riou, J.-M. Salmon, M.-J. Vallier, Z. Günata, P. Barre, Purification, characterization,
and substrate specificity of a novel highly glucose-tolerant β-glucosidase from
Aspergillus oryzae, Appl. Environ. Microbiol. 64 (1998) 3607–3614.
[27] P. Toonkool, P. Metheenukul, P. Sujiwattanarat, P. Paiboon, N. Tongtubtim, M.
Ketudat-Cairns, J.R. Ketudat-Cairns, J. Svasti, Expression and purification of
dalcochinase, a β-glucosidase from Dalbergia cochinchinensis Pierre, in yeast and
bacterial hosts, Protein Expr. Purif. 48 (2006) 195–204.
[28] A.J. Harvey, M. Hrmova, R. De Gori, J.N. Varghese, G.B. Fincher, Comparative
modeling of the three-dimensional structures of family 3 glycoside hydrolases,
Proteins 41 (2000) 257–269.
[29] F. Sievers, A. Wilm, D. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez, H.
McWilliam, M. Remmert, J. Soding, J.D. Thompson, D.G. Higgins, Fast, scalable
generation of high-quality protein multiple sequence alignments using Clustal
Omega, Mol. Syst. Biol. 7 (2011).
[1] J.R. Ketudat Cairns, A. Esen, β-Glucosidases, Cell. Mol. Life Sci. 67 (2010) 3389–3405.
[2] B.L. Cantarel, P.M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, B. Henrissat,
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for
Glycogenomics, Nucleic Acids Res. 37 (2009) D233–D238.
[3] S. Sansenya, R. Opassiri, B. Kuaprasert, C.J. Chen, J.R. Ketudat Cairns, The crystal
structure of rice (Oryza sativa L.) Os4BGlu12, an oligosaccharide and tuberonic
acid glucoside-hydrolyzing β-glucosidase with significant thioglucohydrolase
activity, Arch. Biochem. Biophys. 510 (2011) 62–72.
[4] M. Hrmova, A.J. Harvey, J. Wang, N.J. Shirley, G.P. Jones, B.A. Stone, P.B. Høj, G.B.
Fincher, Barley β-D-glucan exohydrolases with β-D-glucosidase activity, J. Biol.
Chem. 271 (1996) 5277–5286.
[5] G. Legler, K.-R. Roeser, H.-K. Illig, Reaction of β-D-glucosidase A3 from Aspergillus
wentii with D-Glucal, Eur. J. Biochem. 101 (1979) 85–92.