C O M M U N I C A T I O N S
mutant Zn‚2. Interestingly, at a high ionic strength, Zn‚2 converted
the plasmid DNA to the form III. The combination of the present
strategy and the expansion of recognizable DNA sequences by zinc
finger motifs would provide a wide range of artificial nucleases.
Additionally, this hydrolytic activity may be the reason an H4-type
zinc finger protein does not exist in nature. Detailed mechanistic
studies about the site-specific hydrolysis of DNA and the construc-
tion of a family of artificial nucleases based on the zinc finger motif
are currently ongoing in our laboratory.
Figure 3. Cleavage of the plasmid DNA by Zn‚2. The reactions were
carried out with 57.4 nM (0.154 mM bp) DNA and 6 µM Zn‚2 in 5 mM
HEPES buffer (pH 7.5) at 37 °C for 48 h. Lanes 1-4, pUC19, and lanes
5-9, pUC19GC: lanes 1 and 6, 0 mM NaCl; lanes 2 and 7, 50 mM NaCl;
lanes 3 and 8, 200 mM NaCl; lanes 4 and 9, DNA only; lane 5, HindIII-
treated DNA.
Acknowledgment. This study was supported in part by Grants-
in-Aid for the COE Projects “Element Science” and “Kyoto
University Alliance for Chemistry”, and Scientific Research from
the Ministry of Education, Culture, Sports, Science, and Technol-
ogy.
Supporting Information Available: Experimental details and
results of DNA hydrolysis. This material is available free of charge
References
(1) For reviews, see: (a) Long, E. C. Acc. Chem. Res. 1999, 32, 827-836.
(b) Sreedhara, A.; Cowan, J. A. J. Biol. Inorg. Chem. 2001, 6, 337-347.
(c) Franklin, S. J. Curr. Opin. Chem. Biol. 2001, 5, 201-208.
(2) For recent examples, see: (a) Sissi, C.; Rossi, P.; Felluga, F.; Formaggio,
F.; Palumbo, M.; Tecilla, P.; Tonioli, C.; Scrimin, P. J. Am. Chem. Soc.
2001, 123, 3169-3170. (b) Bibikova, M.; Carroll, D.; Segal, D. J.;
Trautman, J. K.; Smith, J.; Kim, Y. G.; Chandrasegaran, S. Mol. Cell.
Biol. 2001, 21, 289-297. (c) Copeland, K. D.; Fitzsimons, M. P.; Houser,
R. P.; Barton, J. K. Biochemistry 2002, 41, 343-356. (d) Boseggia, E.;
Gatos, M.; Lucatello, L.; Mancin, F.; Moro, S.; Palumbo, M.; Sissi, C.;
Tecilla, P.; Tonellato, U.; Zagotto, G. J. Am. Chem. Soc. 2004, 126, 4543-
4549.
(3) (a) Huang, X.; Pieczko, M. E.; Long, E. C. Biochemistry 1999, 38, 2160-
2166. (b) Ananias, D. C.; Long, E. C. Inorg. Chem. 1997, 36, 2469-
2471.
Figure 4. Cleavage of 37 bp DNA by Zn‚2. The reactions were carried
out with 10 µM Zn‚2 in 5 mM HEPES buffer (pH 7.5) containing 75 ng/
µL poly(dI-dC) at 37 °C for 60 h. G + A and C + T are Maxam-Gilbert
sequencing lanes. The GC box sequences are highlighted by light blue (G-
strand) and yellowish green (C-strand). The numbers describe the positions
of the base pairs.
(4) (a) Mack, D. P.; Iverson, B. L.; Dervan, P. B. J. Am. Chem. Soc. 1988,
110, 7572-7574. (b) Nagaoka, M.; Hagihara, M.; Kuwahara, J.; Sugiura,
Y. J. Am. Chem. Soc. 1994, 116, 4085-4086. (c) Harford, C.; Narindra-
sorasak, S.; Sarkar, B. Biochemistry 1996, 35, 4271-4278.
(5) (a) Welch, J. T.; Sirish, M.; Lindstrom, K. M.; Franklin, S. J. Inorg. Chem.
2001, 40, 1982-1984. (b) Kovacic, R. T.; Welch, J. T.; Franklin, S. J. J.
Am. Chem. Soc. 2003, 125, 6656-6662.
(6) Nomura, A.; Sugiura, Y. Inorg. Chem. 2004, 43, 1708-1713.
(7) (a) Laity, J. H.; Lee, B. M.; Wright, P. E. Curr. Opin. Struct. Biol. 2001,
11, 39-46. (b) Wolfe, S. A.; Nekludova, L.; Pabo, C. O. Annu. ReV.
Biophys. Biomol. Struct. 2000, 29, 183-212.
with Kd ) 85 nM.17 As expected, Zn‚2 showed an enhanced
cleavage activity for pUC19GC (Figure 3). Moreover, in sharp
contrast to that of Zn‚1, the reactivity of Zn‚2 for pUC19GC
increased as the ionic strength increases. At [NaCl] ) 200 mM,
Zn‚2 converted pUC19GC even to form III. On the other hand,
Zn‚2 showed a small hydrolytic activity for pUC19 at a high ionic
strength. These results indicate that nonselective binding to DNA
may be prevented at a higher ionic strength, and as a consequence,
the hydrolytic cleavage of the GC box by Zn‚2 was achieved
through specific interactions, such as hydrogen bonding with DNA
bases of the GC box, like the wild-type Sp1.
To specify in detail the cleaved sites within the GC box, a 37
bp DNA duplex containing a GC box was hydrolyzed by Zn‚2.
Figure 4 shows the cleavage sites in the G- and C-strands of the
DNA oligomer, in which the hydrolyzed sites appear as dark bands.
Similar to that in pUC19GC, a higher ionic strength afforded a
higher cleavage activity for the DNA oligomer. In addition, the
results revealed that Zn‚2 hydrolyzes the DNA phosphates around
G(7) on the G-strand and around C(3′), C(6′), and C(7′) on the
C-strand. Cleavage of the two strands at the same positions is
consistent with the transformation of the supercoiled pUC19GC to
form III. Guanine methylation interference studies showed that the
guanine at the 7-position weakly interacts with Zn‚2.17 Such a weak
interaction may cause an effective hydrolytic reaction at around
the G(7) site by Zn‚2.
(8) Kamiuchi, T.; Abe, E.; Imanishi, M.; Kaji, T.; Nagaoka, M.; Sugiura, Y.
Biochemistry 1998, 37, 13827-13834.
(9) Nagaoka, M.; Doi, Y.; Kuwahara, J.; Sugiura, Y. J. Am. Chem. Soc. 2002,
124, 6526-6527.
(10) (a) Segal, D. J.; Beerli, R. R.; Blancafort, P.; Dreier, B.; Effertz, K.; Huber,
A.; Koksch, B.; Lund, C. V.; Magnenat, L.; Valente, D.; Barbas, C. F.,
III. Biochemistry 2003, 42, 2137-2148. (b) Beerli, R. R.; Barbas, C. F.,
III. Nat. Biotechnol. 2002, 20, 135-141. (c) Segal, D. J.; Barbas, C. F.,
III. Curr. Opin. Biotechnol. 2001, 12, 632-637. (d) Sera, T.; Uranga, C.
Biochemistry 2002, 41, 7074-7081.
(11) (a) Koike, T.; Kimura, E. J. Am. Chem. Soc. 1991, 113, 8935-8941. (b)
Kimura, E.; Kodama, Y.; Koike, T.; Shiro, M. J. Am. Chem. Soc. 1995,
117, 8304-8311. (c) Hettich, R.; Schneider, H.-J. J. Am. Chem. Soc. 1997,
119, 5638-5647. (d) Deck, K. M.; Tseng, T. A.; Burstyn, J. N. Inorg.
Chem. 2002, 41, 669-677.
(12) The product of BNP hydrolysis, 4-nitrophenyl phosphate, was quite slowly
hydrolyzed;18 therefore, only the degradation of BNP proceeded under
our experimental conditions (ref 11a).
(13) (a) Koike, T.; Takamura, M.; Kimura, E. J. Am. Chem. Soc. 1994, 116,
8443-8449. (b) Kimura, E. Acc. Chem. Res. 2001, 34, 171-179. (c) Jang,
B.-B.; Lee, K. P.; Min, D. H.; Suh, J. J. Am. Chem. Soc. 1998, 120,
12008-12016.
(14) (a) Kadonaga, J. T.; Jones, K. A.; Tjian, R. Trends Biochem. Sci. 1986,
11, 20-23. (b) Kriwacki, R. W.; Schultz, S. C.; Steitz, T. A.; Caradonna,
J. P. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9759-9763. (c) Kuwahara,
J.; Yonezawa, A.; Futamura, M.; Sugiura, Y. Biochemistry 1993, 32,
5994-6001.
(15) The present DNA cleavage did not change in anaerobic conditions,
indicating that the possibility of a metal ion-driven oxidative cleavage
process can be ruled out.
(16) Yokono, M.; Saegusa, N.; Matsushita, K.; Sugiura, Y. Biochemistry 1998,
37, 6824-6832.
(17) Hori, Y.; Suzuki, K.; Okuno, Y.; Nagaoka, M.; Futaki, S.; Sugiura, Y. J.
Am. Chem. Soc. 2000, 122, 7648-7653.
(18) Kirby, A. J.; Jencks, W. P. J. Am. Chem. Soc. 1965, 87, 3209-3216.
In conclusion, we successfully demonstrated selective hydrolysis
of the DNA duplex at the GC box by the three-tandem zinc finger
JA045663L
9
J. AM. CHEM. SOC. VOL. 126, NO. 47, 2004 15375