1280 Inorg. Chem. 2010, 49, 1280–1282
DOI: 10.1021/ic901504q
Structural and Catalytic Performance of a Polyoxometalate-Based Metal-Organic
Framework Having a Lanthanide Nanocage as a Secondary Building Block
Dongbin Dang,†,‡ Yan Bai,‡ Cheng He,† Jian Wang,† Chunying Duan,*,† and Jingyang Niu‡
†State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China, and
‡Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan
University, Kaifeng 475004, China
Received July 28, 2009
A polyoxometalate-based lanthanide-organic framework was
achieved using the {[Ho4(dpdo)8(H2O)16BW12O40] (H2O)2}7þ
nanocage as a secondary building block for the heterogeneous
catalysis of phosphodiester cleavage in an aqueous solution.
have attracted considerable interest in the fields of solid
acid catalytic, electronic, and magnetic materials.3-6 Also,
because of the large number of potential coordination sites
and the relatively weak coordination ability of POMs,
embedding them into the nanocage or framework of the
Werner-type solids might be an efficient approach to creating
POM-based coordination polymers with novel structures
and interesting properties, especially with homogeneous or
heterogeneous catalytic functions.7-9
Recently, the chemistry of hybrid solid metal-organic
frameworks (MOFs) constructed from organic linkers and
metal nodes has received much attention, owing to the fine-
desired properties by judicious choice of the building blocks.
While the ability of these MOFs to incorporate functional
groups makes them excellent candidates as heterogeneous
catalysts, it remains a great challenge to engineer a strong
Lewis acid in MOFs to find applications in many of the
processes that are currently catalyzed by zeolites.1,2 Poly-
oxometalates (POMs) represent a large class of inorganic oxo
clusters that contain early transition metals. Because of the
versatile chemical, structural, and electronic properties, they
On the other hand, the development of rational app-
roaches to the design of catalysts for hydrolysis of phosphate
diesters is a subject continually attracting interest in bio-
organic chemistry.10 Complexes of lanthanide ions have
proven to be among the most effective synthetic hydrolases
reported to date besidesthose employing alkaline-earth metal
ions such as Ca2þ and Mg2þ. The Lewis acidity of the tri- and
tetravalent lanthanide ions, together with their high coordi-
nation numbers, fast ligand-exchange rates, and absence of
accessible redox chemistry, provides an opportunity to mimic
the activity of hydrolases to bind and activate phosphate
*To whom correspondence should be addressed. E-mail: cyduan@
dlut.edu.cn.
(1) (a) Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248–1256.
(b) Bee, J.; Farha, O.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem.
Soc. Rev. 2009, 38, 1450–1459. (c) Czaja, A. U.; Trukhan, N.; M€uller, U. Chem.
Soc. Rev. 2009, 38, 1284–1293.
(2) (a) Yamada, T.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 6312–
6313. (b) Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.;
Kinoshita, Y.; Kitagawa, S. J. Am. Chem. Soc. 2007, 129, 2607–2614. (c)
Doonan, C. J.; Morris, W.; Furukawa, H.; Yaghi, M. J. Am. Chem. Soc. 2009,
131, 9492–9493. (d) Horike, S.; Dinc, M.; Tamaki, K.; Long, J. R. J. Am. Chem.
Soc. 2008, 130, 5854–5855.
(7) (a) Kawamoto, R.; Uchida, S.; Mizuno, N. J. Am. Chem. Soc. 2005,
127, 10560–10567. (b) Jiang, C.; Lesbani, A.; Kawamoto, R.; Uchida, S.;
Mizuno, N. J. Am. Chem. Soc. 2006, 128, 14240–14241. (c) An, H. Y.; Wang,
E. B.; Xiao, D. R.; Li, Y. G.; Su, Z. M.; Xu, L. Angew. Chem., Int. Ed. 2006, 45,
904–908. (d) Zheng, P. Q.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng, L. S.
Inorg. Chem. 2005, 44, 1190–1192.
(8) (a) Lu, J.; Shen, E. H.; Li, Y. G.; Xiao, D. R.; Wang, E. B.; Xu, L.
Cryst. Growth Des. 2005, 5, 65–67. (b) Ren, Y. P.; Kong, X. J.; Hu, X. Y.; Sun,
M.; Long, L. S.; Huang, R. B.; Zheng, L. S. Inorg. Chem. 2006, 45, 4016–4023.
(c) Kong, X. J.; Ren, Y. P.; Zheng, P. Q.; Long, Y. X.; Long, L. S.; Huang, R. B.;
Zheng, L. S. Inorg. Chem. 2006, 45, 10702–10711.
(3) (a) Pope, M. T. Heteropoly- and Isopolyoxometalates; Springer-Verlag:
New York, 1983. (b) Pope, M. T. Polyoxo anions: Synthesis and Structure.
Comprehensive Coordination Chemistry II; Wedd, A. G., Ed.; Elsevier Science:
New York, 2004; Vol. 4, pp 635-678. (c) Pope, M. T., M€uller, A., Eds.
Polyoxometalate Chemistry: From Topology Via Self-Assembly to Applica-
tions; Kluwer: Dordrecht, The Netherlands, 2001. (d) Hill, C. L. Polyoxometa-
lates: Reactivity. Comprehensive Coordination Chemistry II; Wedd, A. G., Ed.;
Elsevier Science: New York, 2004; Vol. 4, pp 679-759.
(9) For recent examples, see:(a) Knaust, J. M.; Inman, C.; Keller, S. W.
Chem. Commun. 2004, 492–493. (b) Lisnard, L.; Dolbecq, A.; Mialane, P.;
ꢀ
Marrot, J.; Codjovi, E.; Secheresse, F. Dalton Trans. 2005, 3913–3920. (c) Shi, Z.
Y.; Gu, X. J.; Peng, J.; Yu, X.; Wang, E. B. Eur. J. Inorg. Chem. 2006, 385–388.
(d) Li, G. Z.; Salim, C.; Hinode, H. Solid State Sci. 2008, 10, 121–128. (e)
Uehara, K.; Kasai, K.; Mizuno, N. Inorg. Chem. 2007, 46, 2563–2570.
(10) (a) Lu, Z. L.; Liu, C. T.; Neverov, A. A.; Brown, R. S. J. Am. Chem.
Soc. 2007, 129, 11642–11652. (b) Bunn, S. E.; Liu, C. T.; Lu, Z.; Neverov, A. A.;
Brown, R. S. J. Am. Chem. Soc. 2007, 129, 16238–16248. (c) Humphry, T.; Iyer,
S.; Iranzo, O.; Morrow, J. R.; Richard, J. P.; Paneth, P.; Hengge, A. C. J. Am.
Chem. Soc. 2008, 130, 17858–17866. (d) Cacciapaglia, R.; Casnati, A.;
Mandolini, L.; Peracchi, A.; Reinhoudt, D. N.; Salvio, R.; Sartori, A.; Ungaro,
R. J. Am. Chem. Soc. 2007, 129, 12512–12520. (e) Liu, C. T.; Neverov, A. A.;
Brown, R. S. J. Am. Chem. Soc. 2008, 130, 16711–16720.
€
(4) (a) Pope, M. T.; Muller, A. Angew. Chem., Int. Ed. 1991, 30, 34–38. (b)
Coronado, E.; Gomez-Garcia, C. J. Chem. Rev. 1998, 98, 273–296.
(5) (a) Rajkumar, T.; Rao, G. R. J. Chem. Sci. 2008, 120, 587–594. (b) Rao,
G. R.; Rajkumar, T. Catal. Lett. 2008, 120, 261–273.
(6) (a) Cartuyvels, E.; Absillis, G.; Parac-Vogt, T. N. Chem. Commun.
2008, 85–87. (b) Absillis, G.; Cartuyvels, E.; Deun, R. V.; Parac-Vogt, T. N.
J. Am. Chem. Soc. 2008, 130, 17400–17408.
r
pubs.acs.org/IC
Published on Web 01/20/2010
2010 American Chemical Society