4
42
T. HASEGAWA, M. KAJIYAMA AND Y. YAMAZAKI
performed on a ‘merry-go-round’ apparatus with an
Ushio 450 W high-pressure mercury lamp. The amounts
of AP formed were determined from the results of GLC
analyses. The relative quantum yields are shown in Fig.
3. (a) Fox MA, Dulay MT. Chem. Rev. 1993; 93: 341–357; (b)
Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Chem. Rev.
1
995; 95: 69–96.
. Kamat PV. Chem. Rev. 1993; 93: 267–300.
5. Thomas JK. Chem. Rev. 1993; 93: 301–320.
4
6
. Hasegawa T, Yamazaki Y. Recent Res. Dev. Photochem. Photo-
biol. 1997; 1: 19–39.
2.
7
. Oelkrug D, Flemming W, Fullerman R, Gunter R, Honnen W,
Krabichler G, Schafer S, Uhl S. Pure Appl. Chem. 1986; 58: 1207–
General procedure for determination of relative
quantum yields for production of AP from alkyl phenyl
1
218.
. Hasegawa T, Yamazaki Y, Yoshioka M. J. Phys. Org. Chem. 1995;
: 31–34.
8
�
5
ketones on a silica-gel surface. After 5.0 Â 10 mol of
8
an alkyl phenyl ketone (the surface coverage for LP is ca
9. (a) Johnston LJ, de Mayo P, Wong SK. J. Chem. Soc., Chem.
Commun. 1982; 1106–1108; (b) Aoyama H, Miyazaki K,
Sakamoto M, Omote Y. Chem. Lett. 1983; 1583–1586; (c)
Johnston LJ, de Mayo P, Wong SK. J. Org. Chem. 1984; 49:
20–26; (d) Hasegawa T, Moribe J, Yoshioka M. Bull. Chem. Soc.
Jpn. 1988; 61: 1437–1439.
25%) had been loaded on 1.0 g of silica gel and irradiated
at 313 nm, the amount of AP was determined as described
in the procedure for the photolysis of VP on silica gel at
different coverages. The relative quantum yields for the
formation of AP from alkyl phenyl ketones are shown in
Fig. 2 together with those in solution. In the case of the
determination of the relative quantum yields for the
formation of acetophenones from para-substituted alkyl
1
0. (a) Weis LD, Evans TR, Leermarkers PA. J. Am. Chem. Soc. 1968;
9
0: 6109–6118; (b) Avnir D, Johnston LJ, de Mayo P, Wong SK. J.
Chem. Soc., Chem. Commun. 1981; 958–959; (c) de Mayo P,
Nakamura A, Tsang PWK, Wong SK. J. Am. Chem. Soc. 1982;
1
1
04: 6824–6825; (d) Baretz BH, Turro NJ. J. Am. Chem. Soc.
983; 105: 1309–1316; (e) Frederick B, Johnston LJ, de Mayo P,
�
4
phenyl ketones, 1.64 Â 10 mol of the ketones were
loaded on 1.0 g of silica gel. The relative quantum yields
are shown in Table 1.
Wong SK. Can. J. Chem. 1984; 62: 403–410; (f) de Mayo P,
Ramnath N. Can. J. Chem. 1986; 64: 1293–1296; (g) Turro NJ.
Tetrahedron 1987; 43: 1589–1616; (h) Su J-J, Dai G-S, Wu S-K. J.
Photochem. Photobiol. A: Chem. 1994; 83: 49–53, and references
cited therein.
1
1. (a) Farwaha R, de Mayo P, Toong YC. J. Chem. Soc., Chem.
Commun. 1983; 739–740; (b) Dave V, Farwaha R, de Mayo P,
Stothers JB. Can. J. Chem. 1985; 63: 2401–2405.
General procedure for determination of relative
quantum yields for production of Type II cleavage
product from alkyl aryl ketones on a silica gel surface in
the presence of the second ketone. After a mixture of
12. Hasegawa T, Imada M, Yoshioka M. J. Phys. Org. Chem. 1993; 6:
94–498.
3. Hasegawa T, Imase Y, Imada M, Yoshioka M. J. Phys. Org. Chem.
996; 9: 677–682.
4
1
�
4
1.64 Â 10 mol of VP or MeVP and an appropriate
1
amount of the second ketone (MeVP or MeOVP for VP,
VP for MeVP) had been loaded on 1.0 g of silica gel and
irradiated at 313 nm, the amount of AP or MeAP was
determined as described in the procedure for the
photolysis of VP on silica gel at different coverages.
The relative quantum yields for the formation of AP or
MeAP from VP or MeVP with respect to the ratio of VP
or MeVP to the second ketone, respectively, are shown in
Figs. 4–7.
14. Hasegawa T, Imada M, Imase Y, Yamazaki Y, Yoshioka M. J.
Chem. Soc., Perkin Trans 1 1997; 1271–1273.
1
5. Wagner PJ, Park B-S. In Organic Photochemistry, Padwa A (ed).
Marcel Dekker: New York, 1991; vol. 11, Chapt. 4, 227–366.
16. (a) Wagner PJ. J. Am. Chem. Soc. 1967; 89: 5898–5901; (b)
Wagner PJ, Kemppainen AE, Jellinek T. J. Am. Chem. Soc. 1972;
9
4: 7489–7494.
1
7. Wagner PJ. Acc. Chem. Res. 1983; 16: 461–467.
18. Leermakers PA, Thomas HT, Weis LD, James FC. J. Am. Chem.
Soc. 1966; 88: 5075–5083.
1
9. (a) Wagner PJ, Kemppainen AE, Schott HN. J. Am. Chem. Soc.
973; 95: 5604–5614; (b) Wagner PJ, Frerking HW. Jr., Can. J.
1
Chem. 1995; 73: 2047–2061.
0. Wagner PJ, Nakahira T. J. Am. Chem. Soc. 1973; 95: 8474–8475.
1. (a) Hasegawa T, Arata Y, Endoh M, Yoshioka M. Tetrahedron
2
2
REFERENCES
1
985; 41: 1667–1673; (b) Hasegawa T, Nishimura M, Yoshioka
M. J. Phys. Org. Chem. 1990; 3: 230–234; (c) Hasegawa T,
Ohkanda J, Kobayashi M, Yoshioka M. J. Photochem. Photobiol.
A: Chem. 1992; 64: 299–306.
1
2
. Horspool WM (ed). Synthetic Organic Photochemistry. Plenum
Press: New York, 1984.
. (a) Caswell L, Garibay MA, Scheffer JR, Trotter J. J. Chem. Educ.
22. de Mayo P. Pure Appl. Chem. 1982; 54: 1623–1632.
23. de Mayo P, Natarajan LV, Ware WR. Chem. Phys. Lett. 1984; 107:
187–192.
24. Layraud ME. Bull. Soc. Chim. Fr. 1906; [3] 35: 223–234.
25. Murov SL. Handbook of Photochemistry. Marcel Dekker: New
York, 1973; 99.
1
993; 11: 785–787; (b) Leibovich M, Olovsson G, Scheffer JR,
Trotter J. J. Am. Chem. Soc. 1998; 120: 12755–12769; (c)
Takahashi M, Sekine N, Fujita T, Watanabe S, Yamaguchi K,
Sakamoto M. J. Am. Chem. Soc. 1998; 120: 12770–12776, and
references cited therein.
Copyright 2000 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2000; 13: 437–442