LETTER
Enantioselective Synthesis of Optically Active b- and g-Siloxyketones
1741
Table 2 Enantioselective Oxidation of 1,3-Disiloxyindanes Using
(R,R)-2 Catalysta
comparison with the authentic sample. The siloxy group
plays an important role to improve the enantioselectivity
by enhancing the steric effect between the siloxy group of
the substrates and (salen)Mn catalysts.
O
OR
(R,R)-2
(10 mol%)
PhIO (2 equiv)
4-phenylpyridine N-oxide
In conclusion we developed a new method for direct oxi-
dation of silyl ethers to the corresponding ketones using
(salen)Mn(III) catalysts. The catalytic system can be ap-
plied to the enantioselective oxidative transformation of
1,3- and 1,4-disilyl ethers to the corresponding optically
active b- and g-siloxy ketones, respectively, with high
enantioselectivity (up to 93% ee).
OR
OR
(0.5 equiv)
CH2Cl2, 0 °C, 12 h
R = SiMe2-t-Bu (3a)
= SiMe3 (3b)
= H (3c)
4a–c
Entry
Substrate Additiveb Temp (°C) Conv. (%)c Ee (%)d
1
3a
3a
3a
3a
3a
3b
3c
None
25
25
0
13
24
5
57 (R)
66 (R)
78 (R)
78 (R)
89 (R)
49f (R)
51g (R)
Acknowledgment
2
4-PPN
4-PPN
4-PPN
4-PPN
4-PPN
4-PPN
This work was supported by the Research for the Future Program,
The Japan Society for the Promotion of Science, and a Grant-in-Aid
for Scientific Research, the Ministry of Education, Science, Sports,
and Culture, Japan.
3
4e
5e
6
0
17
8
–20
0
30
19
References
(1) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic
Synthesis, 3rd ed.; Wiley: New York, 1999.
(2) Muzart, J. Synthesis 1993, 11; and the references cited
therein.
(3) Muzart, J.; N’Ait Ajjou, A. Synlett 1991, 497.
(4) (a) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34,
2443. (b) Murahashi, S.-I.; Komiya, N. In Biomimetic
Oxidations Catalyzed by Transition Metal Complexes;
Meunier, B., Ed.; Imperial College Press: London, 2000,
563–611.
(5) (a) Murahashi, S.-I.; Komiya, N.; Oda, Y.; Kuwabara, T.;
Naota, T. J. Org, Chem. 2000, 65, 9186. (b) Murahashi, S.-
I.; Oda, Y.; Naota, T.; Kuwabara, T. Tetrahedron Lett. 1993,
34, 1299.
(6) (a) Murahashi, S.-I.; Oda, Y.; Naota, T.; Komiya, N.
Tetrahedron Lett. 1994, 35, 7953. (b) Komiya, N.; Noji, S.;
Murahashi, S.-I. Chem. Commun. 2001, 65.
(7) Murahashi, S.-I.; Oda, Y.; Naota, T. J. Am. Chem. Soc. 1992,
114, 7913.
7
0
a To a mixture of 1,3-disiloxyindane 3 (0.050 mmol), 4-phenylpyri-
dine N-oxide (0.025 mmol), and (R,R)-2 (0.0025 mmol) in CH2Cl2
(1.0 mL) was added PhIO (0.10 mmol). The mixture was stirred for 12
h.
b 4-PPN = 4-phenylpyridine N-oxide.
c Determined by GLC analysis based on the starting substrate using an
internal standard.
d Determined by HPLC analysis using a chiral column (CHIRALPAK
AD, hexane/2-propanol = 500:1).
e Reaction was carried out for 72 h.
f Determined by HPLC analysis using a chiral column (CHIRALPAK
AS, hexane/2-propanol = 20:1).
g Determined by HPLC analysis using a chiral column (CHIRALPAK
OB-H, hexane/2-propanol = 10:1).
To determine the rate-determining step of the reaction, the
deuterium isotope effect was examined. The reaction rates
were determined for the 1-catalyzed oxidations of 1-phe-
nylethyl tert-butyldimethylsilyl ether (kH = 1.2 × 10–6
M–1s–1) and 1-deuterio-1-phenylethyl tert-butyldimethyl-
silyl ether (kD = 1.7 × 10–7M–1s–1) with PhIO in dichlo-
romethane at 10 °C under pseudo first order reaction
conditions.26 Kinetic isotope effect (kH/kD = 7.1) indicates
that the C–H bond cleavage occurs in the transition state.
The present oxidation might proceed via the following
mechanism. The (salen)Mn(III) complex reacts with iodo-
sylbenzene to give (salen)Mn(V)=O species, which un-
dergoes the rate-determining hydrogen atom abstraction
from a substrate14,27 to generate a-siloxybenzyl radical in-
termediate and (salen)Mn(IV)-OH. Hydroxy ligand trans-
fer from (salen)Mn(IV)-OH to the radical intermediate
would give the corresponding a-siloxyalcohol and
(salen)Mn(III) to complete the catalytic cycle.14 The a-sil-
oxyalcohol is rapidly converted to the corresponding
ketones by elimination of the corresponding silanol under
the reaction conditions. This was confirmed by the detec-
tion of tert-butyldimethylsilanol, which is identified by
(8) Murahashi, S.-I.; Oda, Y.; Naota, T.; Komiya, N. J. Chem.
Soc., Chem. Commum. 1993, 139.
(9) (a) Komiya, N.; Naota, T.; Oda, Y.; Murahashi, S.-I. J. Mol.
Catal. A: Chem. 1997, 117, 21. (b) Komiya, N.; Naota, T.;
Murahashi, S.-I. Tetrahedron Lett. 1996, 37, 1633.
(c) Murahashi, S.-I.; Komiya, N.; Hayashi, Y.; Kumano, T.
Pure Appl. Chem. 2001, 73, 311.
(10) Murahashi, S.-I.; Naota, T.; Komiya, N. Tetrahedron Lett.
1995, 36, 8059.
(11) Murahashi, S.-I.; Zhou, X.-G.; Komiya, N. Synlett 2003,
321.
(12) (a) Pd/t-BuOOH: Hosokawa, T.; Imada, Y.; Murahashi, S.-
I. J. Chem. Soc., Chem. Commum. 1983, 1245. (b) Ru/t-
BuOOH: Murahashi, S.-I.; Oda, Y.; Naota, T. Chem. Lett.
1992, 2237.
(13) Joly, S.; Nair, M. S. Tetrahedron: Asymmetry 2001, 12,
2283.
(14) Komiya, N.; Noji, S.; Murahashi, S.-I. Tetrahedron Lett.
1998, 39, 7921.
(15) (a) Miyafuji, A.; Katsuki, T. Synlett 1997, 836.
(b) Miyafuji, A.; Katsuki, T. Tetrahedron 1998, 54, 10339.
(16) (a) Punniyamurthy, T.; Miyafuji, A.; Katsuki, T.
Tetrahedron Lett. 1998, 39, 8295. (b) Punniyamurthy, T.;
Katsuki, T. Tetrahedron 1999, 55, 9439.
Synlett 2004, No. 10, 1739–1742 © Thieme Stuttgart · New York