Angewandte
Chemie
[5] a) M. Frigerio, M. Santagostino, S. Sputore, G. Palmisano, J. Org.
(Table 3, entries 3 and 4) but also steric effects (Table 3,
entry 5) significantly influence the reaction. However, both
primary and secondary alcohols with electron-donating or
-withdrawing groups give excellent yields with [dib-
mim]+[BF4]À as the oxidant. Pausacker measured the oxida-
tion rates of isohydrobenzoin by aryl iodosoacetates in acetic
acid and found that electron-donating groups present in the
aryl moiety decrease the reaction rate, but electron-with-
drawing groups increase the rate.[16] The imidazolium cation
will act as an electron-withdrawing group in the [dib-
mim]+[BF4]À oxidant, and hence greatly enhance the reaction
rate. Therefore, higher yields can be obtained in a shorter
reaction time.
Chem. 1995, 60, 7272 – 7276; b) E. J. Corey, A. Palani, Tetrahe-
dron Lett. 1995, 36, 3485 – 3488.
[6] a) W. Adam, F. G. Gelalcha, C. R. Saha-Moller, V. R. Stegmann,
J. Org. Chem. 2000, 65, 1915 – 1918; b) W. Adam, S. Hajra, M.
Herderich, C. R. Saha-Moller, Org. Lett. 2000, 2, 2773 – 2776.
[7] a) A. De Mico, R. Margarita, L. Parlanti, A. Vescovi, G.
Piancatelli, J. Org. Chem. 1997, 62, 6974 – 6977; b) R. S. Varma,
R. Dahiya, R. K. Saini, Tetrahedron Lett. 1997, 38, 7029 – 7032.
[8] a) T. Welton, Chem. Rev. 1999, 99, 2071 – 2084; b) P. Wasser-
scheid, W. Keim, Angew. Chem. 2000, 112, 3926 – 3945; Angew.
Chem. Int. Ed. 2000, 39, 3772 – 3789; c) J. S. Wilkes, Green Chem.
2002, 4, 73 – 80; d) P. Wasserscheid, T. Welton, Ionic Liquids in
Synthesis, Wiley-VCH, Weinheim, 2003; e) M. J. Earle, S. P.
Katdare, K. R. Seddon, Org. Lett. 2004, 6, 707 – 710.
[9] a) A. E. Visser, R. P. Swatloski, W. M. Reicher, R. Mayton, S.
Sheff, A. Wierzbicki, J. H. Davis, R. D. Rogers, Chem. Commun.
2001, 135 – 136; b) E. D. Bates, R. D. Mayton, I. Ntai, J. H.
Davis, Jr., J. Am. Chem. Soc. 2002, 124, 926 – 927.
[10] W. Miao, T. H. Chan, Org. Lett. 2003, 5, 5003 – 5005.
[11] a) S. V. Ley, A. W. Thomas, H. Finch, J. Chem. Soc. Perkin Trans.
1 1999, 667 – 671; b) W. Miao, T. H. Chan, Org. Lett. 2003, 5,
5003 – 5005.
[12] S. Park, R. J. Kazlauskas, J. Org. Chem. 2001, 66, 8395 – 8401.
[13] a) H. Monenschein, G. Sourkouni-Argirusi, K. M. Schubothe, T.
OꢀHare, A. Kirschning, Org. Lett. 1999, 1, 2101 – 2104; b) A.
Kirschning, Eur. J. Org. Chem. 1998, 2267 – 2274.
[14] Many reports about the oxidation of organic compounds by
hypohalite salts or halogens have been published: a) A. R.
Katritzky, O. Meth-Cohn, C. W. Rees in Comprehensive Organic
Functional Group Transformations, Vol. 5, Pergamon, New
York, 1995; b) R. C. Larock, Comprehensive Organic Trans-
formations, Wiley, New York, 1999; c) J. Palou, Chem. Soc. Rev.
1994, 23, 357 – 361; d) P. L. Anelli, C. B. Fernando, S. Quici, J.
Org. Chem. 1987, 52, 2559 – 2562; e) J. Yoshida, R. Nakai, N.
Kawabata, J. Org. Chem. 1980, 45, 5269 – 5273; f) D. Pletcher, N.
Tomov, J. Appl. Electrochem. 1977, 7, 501 – 504; g) T. Shono, Y.
Matsumura, J. Hayashi, M. Mizoguchi, Tetrahedron Lett. 1979,
20, 165 – 168, and references therein.
In conclusion, we have demonstrated that the dehydro-
genating properties of [dibmim]+[BF4]À can be used for the
oxidation of alcohols to carbonyl compounds. The main
features of this process are: 1) a high degree of selectivity for
the oxidation of primary alcohols to carbonyl compounds in
an ionic liquid; 2) easy workup and environmentally benign—
the ion-supported hypervalent iodine(iii) reagent can be
recovered and reused after oxidation with peracetic acid; and
3) notably, the aldehydes do not undergo further oxidation to
carboxylic acids even at longer reaction times. Studies on
applications of [dibmim]+[BF4]À in other reactions are in
progress.
Received: September 3, 2004
Published online: January 3, 2005
Keywords: alcohols · hypervalent compounds · iodine ·
.
ionic liquids · oxidation
[15] K. R. Seddon, A. Stark, Green Chem. 2002, 4, 119 – 123.
[16] K. H. Pausacker, J. Chem. Soc. 1953, 107 – 109.
[1] a) J. Muzart, Chem. Rev. 1992, 92, 113 – 140; b) R. C. Larock,
Comprehensive Organic Transformations, 2nd ed., Wiley, New
York, 1999; c) V. R. Choudhary, P. A. Chaudhari, V. S. Nar-
khede, Catal. Commun. 2003, 4, 171 – 175.
[2] a) I. E. Marko, P. R. Giles, M. Tsukazaki, S. M. Brown, C. J.
Urch, Science 1996, 274, 2044 – 2046; b) K. Sato, M. Aoki, J.
Takagi, R. Noyori, J. Am. Chem. Soc. 1997, 119, 12386 – 12387;
c) I. E. Marko, M. Tsukazaki, P. R. Giles, S. M. Brown, C. J.
Urch, Angew. Chem. 1997, 109, 2297 – 2299; Angew. Chem. Int.
Ed. Engl. 1997, 36, 2208 – 2210; d) M. Zhao, J. Li, E. Mano, Z.
Song, D. M. Tschaen, E. J. J. Grabowski, P. J. Reider, J. Org.
Chem. 1999, 64, 2564 – 2566; e) H. Tohma, S. Takizawa, T.
Maegawa, Y. Kita, Angew. Chem. 2000, 112, 1362 – 1364; Angew.
Chem. Int. Ed. 2000, 39, 1306 – 1308; f) S. Velusamy, T. Punniya-
murthy, Org. Lett. 2004, 6, 217 – 219; g) B. Z. Zhan, M. A. White,
T. K. Sham, J. A. Pincock, R. J. Doucet, K. V. Ramana Rao,
K. N. Robertson, T. S. Cameron, J. Am. Chem. Soc. 2003, 125,
2195 – 2199.
[3] a) P. J. Stang, V. V. Zhdankin, Chem. Rev. 1996, 96, 1123 – 1178;
b) A. Varvoglis, Hypervalent Iodine in Organic Synthesis,
Academic Press, London, 1997; c) T. Wirth, U. H. Hirt, Synthesis
1999, 1271 – 1287; d) R. M. Moriarty, O. Prakash, Org. React.
1999, 54, 273 – 418; e) V. V. Zhdankin, P. J. Stang, Chem. Rev.
2002, 102, 2523 – 2584.
[4] a) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155 – 4156;
b) D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277 –
7287; c) S. D. Meyer, S. L. Schreiber, J. Org. Chem. 1994, 59,
7549 – 7552.
Angew. Chem. Int. Ed. 2005, 44, 952 –955
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
955