Reaction of OH with HO2NO2
J. Phys. Chem. A, Vol. 108, No. 7, 2004 1149
Here, A and B are constants related to the initial concentrations
of OH and NO3. This temporal profile of NO3 was included
with the measured ratio profiles (such as that shown in Figure
8b) and the yield of NO3 in PNA photolysis31 to derive the
yield of NO3, as described elsewhere.25 The calculated lines
for various yields of NO3 are also shown in Figure 8b. Several
such experiments and analysis were performed to obtain an
upper limit of <0.05 for the NO3 yield in reaction 3.
Acknowledgment. This work was funded in part by NASA’s
Upper Atmospheric Research Program.
References and Notes
(1) Seinfeld, J. H.; Pandis, N. S. Atmospheric Chemistry and Physics;
Wiley: New York, 1998.
(2) WMO/UNEP Scientific Assessment of Ozone Depletion: 1998
(Geneva, Switzerland); National Aeronautics and Space Administration:
1998.
We have measured upper limits for Φ3b and Φ3c. Assuming
that there are no channels other than reactions 3a, 3b, and 3c
for reaction 3, the lower limit for Φ3a is quoted to be >0.85.
Note that we really did not obtain a measurable value for
reaction 3b or 3c, and, therefore, the branching ratio for reaction
3a to produce H2O, O2, and NO2, could be 1.0.
(3) Finlayson-Pitts, B. J.; Pitts, J. N., Jr. Atmospheric Chemistry:
Fundamentals and Experimental Techniques; Wiley: New York, 1986.
(4) Sander, S. P.; Finlayson-Pitts, B. J.; Friedl, R. R.; Golden, D.
M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat,
G. K.; Orkin, V. L.; Ravishankara, A. R. Chemical Kinetics and Photo-
chemical Data for Use in Atmospheric Studies, Evaluation Number 14.
JPL Publ. 2002, 02-25. (Available at the following URL: http://
jpldataeval.jpl.nasa.gov.)
(5) Graham, R. A.; Winer, A. M.; Pitts, J. N., Jr. Chem. Phys. Lett.
1977, 51, 215.
4. Atmospheric Implications
(6) Graham, R. A.; Winer, A. M.; Pitts, J. N. J. Phys. Chem. 1978, 68,
4505.
(7) Zabel, F. Z. Phys. Chem. 1995, 188, 119.
(8) Knight, G.; Ravishankara, A. R.; Burkholder, J. B. Phys. Chem.
Chem. Phys. 2002, 4, 1432.
The values of k3(T) at the temperatures of the upper
troposphere and lower stratosphere (UTLS) are needed to
evaluate the atmospheric lifetime of HO2NO2 and to elucidate
the role of peroxynitric acid (HO2NO2, PNA) in affecting both
the HOx and NOx budgets. Furthermore, because reaction 3 is
a major sink for HOx, its rate coefficient is needed to assess the
HOx loss rates and the stratospheric O3 trends that are due to
the anthropogenic emission of nitrogen oxides and halogen-
containing molecules. The results from the present study
significantly reduce the uncertainties in k3. Our k3 results are
different from previously reported values; however, the differ-
ences from the values recommended for stratospheric modeling
are not large. For instance, k3(200 K) extrapolated using the
results of this work is 1 × 10-11 cm3 molecule-1 s-1; this value
is only ∼15% lower than the current recommended value.
Consequently, our results will lead to small changes in the
calculated global lifetime of PNA in the UTLS and the impact
on ozone trends. However, the uncertainty in these values that
is due to uncertainties in the HO2NO2 chemistry is considerably
reduced.
(9) Singer, R. J.; Crowley, J. N.; Burrows, J. P.; Schneider, W.;
Moortgat, G. K. J. Photochem. Photobiol. A: Chem. 1989, 48, 17.
(10) Molina, L. T.; Molina, M. J. J. Photochem. Photobiol. A: Chem.
1981, 15, 97.
(11) Roehl, C. M.; Nizkorodov, S. A.; Zhang, H.; Blake, G. A.;
Wennberg, P. O. J. Phys. Chem. A 2002, 106, 3766.
(12) Smith, C. A.; Molina, L. T.; Lamb, J. J.; Molina, M. J. Int. J. Chem.
Kinet. 1984, 16, 41.
(13) Trevor, P. L.; Black, G.; Barker, J. R. J. Phys. Chem. 1982, 86,
1661.
(14) Barnes, I.; Bastian, V.; Becker, K. H.; Fink, E. H.; Zabel, F. Chem.
Phys. Lett. 1986, 123, 28.
(15) Barnes, I.; Bastian, V.; Becker, K. H.; Fink, E. H.; Zabel, F. Chem.
Phys. Lett. 1981, 83, 459.
(16) Gierczak, T.; Gilles, M. K.; Bauerle, S.; Ravishankara, A. R. J.
Phys. Chem. A 2003, 107, 5014.
(17) Brown, S. S.; Talukdar, R. K.; Ravishankara, A. R. J. Phys. Chem.
A 1999, 103, 3031.
(18) Wine, P. H.; Kreutter, N. M.; Ravishankara, A. R. J. Phys. Chem.
1979, 83, 3191.
(19) Kegley-Owen, C. S.; Gilles, M. K.; Burkholder, K. B.; Ravishan-
kara, A. R. J. Phys. Chem. A 1999, 103, 5040.
The product branching ratio measurements presented in this
work are consistent with the current assumptions used in
atmospheric model calculations. The main reaction channel leads
to the formation of NO2, O2, and H2O (reaction 3a). This
reaction channel will lead to the net removal of HOx in the
UTLS:
(20) Nicovich, J. M.; Wine, P. H. J. Geophys. Res. 1988, 93, 2417.
(21) Burkholder, J. B.; Talukdar, R. K.; Ravishankara, A. R.; Solomon,
S. J. Geophys. Res. 1993, 98, 22937.
(22) Gierczak, T.; Burkholder, J. B.; Ravishankara, A. R. J. Phys. Chem.
A 1999, 102, 877.
(23) Rothman, L. S.; Rinsland, C. P.; Goldman, A.; Massie, S. T.;
Edwards, D. P.; Flaud, J.-M.; Perrin, A.; Camy-Peyret, C.; Dana, V.;
Mandin, J.-Y.; Schroeder, J.; McCann, A.; Gamache, R. R.; Wattson, R.
B.; Yoshino, K.; Chance, K. V.; Jucks, K. W.; Brown, L. R.; Nemtchinov,
V.; Varanasi, P. J. Quant. Spectrosc. Radiat. Transfer 1998, 60, 665.
(24) Smith, C. A. The Atmospheric Reaction Kinetics of OH by Flash
Photolysis-Resonance Fluorescence, Ph.D. Thesis, University of California,
Irvine, CA, 1983.
HO2 + NO2 + M f HO2NO2 + M
OH + HO2NO2 f H2O + NO2 + O2
net reaction: OH + HO2 f H2O + O2
(1)
(3a)
(13)
(25) Brown, S. S.; Ravishankara, A. R.; Stark, H. J. Phys. Chem. A
2000, 104, 7044.
(26) Yokelson, R. J.; Burkholder, J. B.; Fox, R. W.; Talukdar, R. K.;
Ravishankara, A. R. J. Phys. Chem. A 1994, 98, 13144.
(27) Yokelson, R. J.; Burkholder, J. B.; Fox, R. W.; Ravishankara, A.
R. J. Phys. Chem. A 1997, 101, 6667.
(28) Kenley, R. A.; Trevor, P. L.; Lan, B. Y. J. Am. Chem. Soc. 1981,
103, 2203.
(29) Vaghjiani, G. L.; Ravishankara, A. R.; Cohen, N. J. Phys. Chem.
1989, 93, 7833.
(30) Roehl, C. M.; Mazely, T. L.; Friedl, R. R.; Li, Y.; Francisco, J. S.;
Sander, S. P. J. Phys. Chem. A 2001, 105, 1592.
(31) Jime´nez, E.; Gierczak, T.; Burkholder, J. B.; Stark, H.; Ravishan-
kara, A. R. manuscript in preparation.
However, if reactions 3b and 3c were larger, reaction 3 would
have been a smaller sink for HOx in the lower stratosphere (LS).
Recently, Salawitch et al.32 suggested a few possible explana-
tions for their inability to match the measured [OH]/[HO2] ratio
in the LS with their model calculations. One possibility proposed
was that k3 was at the lower limit of the NASA/JPL recom-
mendation4 at the temperatures of the LS. Another possibility
was that the branching ratio for reaction 3a was smaller than
recommended. On the basis of our results, we excluded these
two possibilities. Measurement of the product yields at tem-
peratures that are characteristic of the LS would be beneficial.
(32) Salawitch, R. J.; Wennberg, P. O.; Toon, G. C.; Sen, B.; Blavier,
J. F. Geophys. Res. Lett. 2002, 29, 10.1029/2002GL015006.