Page 5 of 6
ACS Catalysis
Soc. 2014, 136, 506ꢀ512. (d) Wendlandt, A. E.; Stahl, S. S. Modular
nism of C−C Cleavage of Cyclic 1,2ꢀDiketones with Alkaline Hydroꢀ
gen Peroxide. The Acyclic Mechanism and Its Application to the
Basic Autooxidation of Pyrogallol. J. Am. Chem. Soc. 1983, 105,
5035ꢀ5040.
oꢀQuinone Catalyst System for Dehydrogenation of Tetrahydroquinoꢀ
lines under Ambient Conditions. J. Am. Chem. Soc. 2014, 136,
11910ꢀ11913.
1
2
3
4
5
6
7
8
9
(7) (a) Corey, E. J.; Achiwa, K. Oxidation of Primary Amines to
Ketones. J. Am. Chem. Soc. 1969, 91, 1429ꢀ1432. (b) Buckley, T. F.;
Rapoport, H. Mild and Simple Biomimetic Conversion of Amines to
Carbonyl Compounds. J. Am. Chem. Soc. 1982, 104, 4446ꢀ4450.
(8) Srogl, J.; Voltrova, S. Copper/Ascorbic Acid Dyad as a Catalytꢀ
ic System for Selective Aerobic Oxidation of Amines. Org. Lett.
2009, 11, 843ꢀ845.
(9) (a) Matsuo, J.; Kawana, A.; Fukuda, Y.; Mukaiyama, T. Oxidaꢀ
tive Deamination of Various Primary Amines to the Corresponding
Carbonyl Compounds by Using NꢀtertꢀButylphenylsulfinimidoyl
Chloride. Chem. Lett. 2001, 712ꢀ713. (b) Nicolaou, K. C.; Mathison,
C. J. N.; Montagnon, T. oꢀIodoxybenzoic Acid (IBX) as a Viable
Reagent in the Manipulation of Nitrogenꢀ and SulfurꢀContaining
Substrates: Scope, Generality, and Mechanism of IBXꢀMediated
Amine Oxidations and Dithiane Deprotections. J. Am. Chem. Soc.
2004, 126, 5192ꢀ5201. (c) Hamamoto, H.; Suzuki, Y.; Takahashi, H.;
Ikegami, S. Direct Transformation of Benzilic Amines to Carbonyls
Using Polyacrylamideꢀbound Tungstate under PhaseꢀTransfer Catalyꢀ
sis Conditions. Tetrahedron Lett. 2007, 48, 4239ꢀ4242. (d) Galletti,
P.; Funiciello, F.; Soldati, R.; Giacomini, D. Selective Oxidation of
Amine to Aldehydes or Imines using LaccaseꢀMediated Bioꢀ
Oxidation. Adv. Synth. Catal. 2015, 357, 1840ꢀ1848.
(10) For the earlier attempts with low yields of 10ꢀ40 %, see: (a)
Yoneda, F.; Sakuma, Y.; Kadokawa, Y. Koshiro, A. Oxidation of
Amines to Carbonyl Compounds by Pyrimido[4,5ꢀb]quinolineꢀ2,4ꢀ
(3H,10H)ꢀdione (5ꢀDeazaflavin). Chem. Lett. 1979, 8, 1467ꢀ1468. (b)
Yoneda, F.; Kakagawa, K. Autorecylcling in the Oxidation of Alcoꢀ
hols and Amines by 1,6ꢀDimethylpyrimidoꢀ[4,5ꢀc]pyridazineꢀ
5,7(1H,6H)ꢀdione (4ꢀDeazatoxoflavins). J. Chem. Soc., Chem. Com-
mun. 1980, 878ꢀ879. (c) Yoneda, F.; Nakagawa, K.; Noguchi, M.;
Higuchi, M. Syntheses of 1, 6ꢀDimethylpyrimido [4,5ꢀc] pyridazineꢀ
5, 7(1H,6H)ꢀdiones (4ꢀDeazatoxoflavins) and Their Use in the Autoꢀ
recycling Oxidation of Alcohols and Amines. Chem. Pharm. Bull.
1981, 29, 379ꢀ385. (d) Nagamatsu, T.; Hashiguchi, Y.; Sakuma, Y.;
Yoneda, F. Autorecycling Oxidation of Amines to Carbonyl Comꢀ
pounds Catalyzed by 3,4ꢀDisubstituted 4ꢀDeazatoxoflavin Derivaꢀ
tives. Chem. Lett. 1982, 11, 1309ꢀ1312. (d) Ohshiro, Y.; Itoh, S.;
Kurokawa, K.; Kato, J.; Hirao, T.; Agawa, T. Micelle Enhanced Oxiꢀ
dation of Amines by Coenzyme PQQ. Tetrahedron Lett. 1983, 24,
3465ꢀ3468.
(14) For selected examples, see: (a) Wanner, M. J.; van der Haas,
R. N. S.; de Cuba, K. R.; van Maarseveen, J. H.; Hiemstra, H. Cataꢀ
lytic Asymmetric Pictet–Spengler Reactions via Sulfenyliminium
Ions. Angew. Chem. Int. Ed. 2007, 46, 7485ꢀ7487. (b) Lou, S.;
Moquist, P. N.; Schaus, S. E. Asymmetric Allylboration of Acyl
Imines Catalyzed by Chiral Diols. J. Am. Chem. Soc. 2007, 129,
15398ꢀ15404. (c) Itoh, J.; Fuchibe, K.; Akiyama, T. Chiral Phosphorꢀ
ic Acid Catalyzed Enantioselective Friedel–Crafts Alkylation of Inꢀ
doles with Nitroalkenes: Cooperative Effect of 3 Å Molecular Sieves.
Angew. Chem. Int. Ed. 2008, 47, 4016ꢀ4018. (d) Li, N.; Song, J.; Tu,
X.ꢀF.; Liu, B.; Chen, X.ꢀH.; Gong, L.ꢀZ. Organocatalytic Asymmetric
Intramolecular [3+2] Cycloaddition: A Straightforward Approach to
Access Multiply Substituted Hexahydrochromeno[4,3ꢀb]pyrrolidine
Derivatives in High Optical Purity. Org. Biom. Chem. 2010, 8, 2016ꢀ
2019. (e) Takizawa, S.; Kiriyama, K.; Ikeki, K.; Sasai, H. A Bifuncꢀ
tional Spiroꢀtype Organocatalyst with High Enantiocontrol: Applicaꢀ
tion to the AzaꢀMorita–Baylis–Hillman Reactions. Chem. Commun.
2011, 47, 9227ꢀ9229.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) CCDC 1826024 contains the supplementary crystallographic
data for 3t. These data can be obtained free of charge from The Camꢀ
bridge
Crystallographic
Data
Centre
via
(16) For the aerobic oxidation of naphthaleneꢀ1,2ꢀdiols, see: Kim,
H. Y.; Takizawa, S.; Oh, K. Copperꢀcatalyzed Divergent Oxidative
Pathways of 2ꢀNaphthol Derivatives: orthoꢀNaphthoquinone versus 2ꢀ
BINOLs. Org. Biomol. Chem. 2016, 14, 7191ꢀ7196.
(17) The use of o-NQ1 for phenylalanine and leucine did not show
the catalytic activity, only leading to the corresponding aldehydes in
10ꢀ20% yields. For the pioneering deamination attempts of carboxylic
acids, see: a) Itoh, S.; Kato, N.; Ohshiro, Y.; Agawa, T. Oxidative
Decarboxylation of αꢀAmino Acids with Coenzyme PQQ. Tetrahe-
dron Lett. 1984, 25, 4753ꢀ4756. (b) Mure, M.; Suzuki, A.; Itoh, S.;
Ohshiro, Y. Oxidative C−C Fission (Dealdolation) of βꢀHydroxy
Amino Acids by Coenzyme PQQ. J. Chem. Soc., Chem. Commun.
1990, 1608ꢀ1612.
(18) For the cytosine deaminase activity, see: (a) Kream, J.; Charꢀ
gaff, E. On the Cytosine Deaminase of Yeast. J. Am. Chem. Soc.
1952, 74, 5157ꢀ5160. (b) Cohen, S. S.; Barner, H. D. The Conversion
of 5ꢀMethyldeoxycytidine to Thymidine in vitro and in vivo. J. Biol.
Chem. 1957, 226, 631ꢀ642. (c) Ipata, P. L.; Marmocchi, F.; Magni,
G.; Felicioli, R.; Polidoro, G. Baker's Yeast Cytosine Deaminase.
Enzymic Properties and Allosteric Inhibition by Nucleosides and
Nucleotides. Biochemistry, 1971, 10, 4270ꢀ4276. (d) Hitchcock, D.
S.; Fedorov, A. A.; Fedrov, E. V.; Almo, S. C.; Raushel, F. M. Disꢀ
covery of a Bacterial 5ꢀMethylcytosine Deaminase. Biochemistry,
2014, 53, 7426ꢀ7435.
(11) Goriya, Y.; Kim, H. Y.; Oh, K. oꢀNaphthoquinoneꢀCatalyzed
Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst
Approach. Org. Lett. 2016, 18, 5174ꢀ5177.
(12) A single example of secꢀprimary amine oxidation by TBHBQ
to imine in 69% yield was described, see: Wendlandt, A. E.; Stahl, S.
S. Chemoselective Organocatalytic Aerobic Oxidation of Primary
Amines to Secondary Imines. Org. Lett. 2012, 14, 2850ꢀ2853.
(13) After the reaction, the formation of diacid derivatives, possiꢀ
bly formed by the H2O2ꢀpromoted cleavage of o-NQ1, was confirmed
from the MS analysis. For the formation of diacids from the oxidation
of orthoꢀquinones, see: (a) Speier, G.; Tyeklar, Z. Kinetics and Mechꢀ
anism of the Oxidation of 3,5ꢀDiꢀtꢀbutylꢀoꢀbenzoquinone with Hyꢀ
drogen Peroxide in Aqueous Methanol Solution. J. Chem. Soc., Per-
kin Trans 2, 1981, 1176ꢀ1179. (b) Sawaki, Y.; Foote, C. S. Mechaꢀ
(19) The chemical conversion of cytosine to uracil requires nitrous
acid followed by strong basic conditions, see: Swigor, J. E.; Pittman,
K. A. Synthesis of 1ꢀ(2ꢀDeoxyꢀ2ꢀfluoroꢀβꢀDꢀarabinofuranosyl)ꢀ5ꢀiodo
[2ꢀ14C]uracil. J. Label. Compd. Radiopharm, 1985, 22, 931ꢀ937.
ACS Paragon Plus Environment