10.1002/adsc.201801163
Advanced Synthesis & Catalysis
General
Meotti, V. C. Borges, G. Zeni, J. B. T. Rocha, C.W.
Nogueira, Toxicol. Lett. 2003, 143, 9–16;
All reagents were purchased with purities >98% and used directly
as received. Solvents are analytical pure (AR) and directly used
without any further treatment. IR spectra were measured on a
Bruker Tensor 27 Infrared spectrometer. NMR spectra were
recorded on a Bruker Avance instrument (400 MHz for 1H NMR)
using CDCl3 as the solvent and Me4Si as the internal standard.
[4] a) L. Sancineto, F. Mangiavacchi, C. Tidei, L. Bagnoli,
F. Marini, A. Gioiello, J. Scianowski, C. Santi, Asian J.
Org. Chem. 2017, 6, 988–992; b) L. Sancineto, C. Tidei,
L. Bagnoli, F. Marini, E. J. Lenardao, C. Santi,
Molecules 2015, 20, 10496–10510; c) C. Santi, R. Di
Lorenzo, C. Tidei, L. Bagnoli, T. Wirth, Tetrahedron
2012, 68, 10530–10535; d) S. Santoro, C. Santi, M.
Sabatini, L. Testaferri, M. Tiecco, Adv. Synth. Catal.
2008, 350, 2881–2884; e) G.-J. ten Brink, B. C. M.
Fernandes, M. C. A. van Vliet, I. W. C. E. Arends, R.
A. Sheldon, J. Chem. Soc. Perkin Trans. 1 2001, 224–
228.
1
Chemical shifts for H NMR were referred to internal Me4Si (0
ppm) and J-values shown in Hz. GC-MS analysis were performed
on a Thermofisher Trace ISQ instrument, with initial temperature
50 oC and temperature increasing rate at 15 oC/min for 50-200 oC
and at 10 oC/min for 200-300 oC. The XPS spectra were
determined on ThermoScientific ESCALAB 250Xi X-ray
photoelectron spectrometer.
Typical procedure for the deoximation reaction.
The mixture of 1 mmol of ketoxime (1), 0.05 mmol of
[5] a) T. Wang, X. Jing, C. Chen, L. Yu, J. Org. Chem.
2017, 82, 9342−9349; b) L. Yu, F. Chen, Y. Ding,
ChemCatChem 2016, 8, 1033–1037; c) X. Zhang, J.
Sun, Y. Ding, L. Yu, Org. Lett. 2015, 17, 5840–5842; d)
L. Yu, Y. Wu, H. Cao, X. Zhang, X. Shi, J. Luan, T.
Chen, Y. Pan, Q. Xu, Green Chem. 2014, 16, 287–293.
.
PhCH2Se(O)OH and 0.0125 mmol of FeSO4 7H2O in 2 mL of
EtOAc in a reaction tube was heated at 60 oC in open air for 24 h.
After cooling to room temperature, the solvent was removed by a
rotary evaporator and the residue separated by flash column
chromatography (eluent: petroleum/EtOAc = 20/1) to afford the
ketone product (2).
[6] For reviews, please see: a) D. M. Freudendahl, S.
Santoro, S. A. Shahzad, C. Santi, T. Wirth, Angew.
Chem. 2009, 121, 8559–8562; Angew. Chem. Int. Ed.
2009, 48, 8409–8411; b) C. Santi, S. Santoro, B.
Battistelli, Curr. Org. Chem. 2010, 14, 2442–2462; c) S.
Santoro, J. B. Azeredo, V. Nascimento, L. Sancineto, A.
L. Braga, C. Santi, RSC Adv. 2014, 4, 31521–31535; d)
J. Młochowski, H. Wójtowicz-Młochowska, Molecules
2015, 20, 10205–10243; e) A. Breder, S. Ortgies,
Tetrahedron Lett. 2015, 56, 2843–2852; f) R. Guo, L.
Liao, X. Zhao, Molecules 2017, 22, 835.
Acknowledgements
We thank NNSFC (21202141, 21672163), Jiangsu Provincial Six
Talent Peaks Project (XCL-090), Priority Academic Program
Development of Jiangsu Higher Education Institutions (PAPD),
Top-notch Academic Programs Project of Jiangsu Higher
Education Institutions (TAPP), and the Nature Science
Foundation of Guangling College (ZKZD17005) for financial
support.
References
[7] a) C. Depken, F. Krätzschmar, R. Rieger, K. Rode, A.
Breder, Angew. Chem. 2018, 130, 2484–2488; Angew.
Chem. Int. Ed. 2018, 57, 2459–2463; b) A. Breder, K.
Rode, M. Palomba, S. Ortgies, R. Rieger, Synthesis
2018, 50, 3875–3885; c) X. Liu, Y. Liang, J. Ji, J. Luo,
X. Zhao, J. Am. Chem. Soc. 2018, 140, 4782–4786; d) J.
Luo, Q. Cao, X. Cao, X. Zhao, Nat. Commun. 2018, 9,
527; e) R. Guo, J. Huang, X. Zhao, ACS Catal. 2018, 8,
926–930; f) S. Ortgies, R. Rieger, K. Rode, K.
Koszinowski, J. Kind, C. M. Thiele, J. Rehbein, A.
Breder, ACS Catal. 2017, 7, 7578–7586; g) L. Liao, R.
Guo, X. Zhao, Angew. Chem. 2017, 129, 3249–3253;
Angew. Chem. Int. Ed. 2017, 56, 3201–3205; h) W. Jin,
P. Zheng, W.-T. Wong, G.-L Law, Adv. Synth. Catal.
2017, 359, 1588–1593; i) R. Guo, J. Huang, H. Huang,
X. Zhao, Org. Lett. 2016, 18, 504–507; j) S. Ortgies, C.
Depken, A. Breder, Org. Lett. 2016, 18, 2856–2859; k)
A. J. Cresswell, S. T.-C. Eey, S. E. Denmark, Nat.
Chem. 2015, 7, 146–152; l) Z. Deng, J. Wei, L. Liao, H.
Huang, X. Zhao, Org. Lett. 2015, 17, 1834–1837; m) S.
Ortgies, A. Breder, Org. Lett. 2015, 17, 2748–2751; n)
F. Chen, C. K. Tan, Y.-Y. Yeung, J. Am. Chem. Soc.
2013, 135, 1232–1235; o) J. Trenner, C. Depken, T.
Weber, A. Breder, Angew. Chem. 2013, 125, 9121–
9125; Angew. Chem. Int. Ed. 2013, 52, 8952–8956.
[1] For selected recent articles, please see: a) A. M. S.
Recchi, D. F. Back, G. Zeni, J. Org. Chem. 2017, 82,
2713–2723; b) S. Kodama, T. Saeki, K. Mihara, S.
Higashimae, S. Kawaguchi, M. Sonoda, A. Nomoto, A.
Ogawa, J. Org. Chem. 2017, 82, 12477–12484; c) C.
Santi, C. Tomassini, L. Sancineto, Chimia 2017, 71,
592-595; d) Y.-X. Zhen, M. Yang, H. Zhang, G.-S. Fu,
J.-L. Wang, S.-F. Wang, R.-N. Wang, Sci. Bull. 2017,
62, 1530-1537; e) H. Luan, H. Sun, B. Xue, X. Li, Chin.
J. Org. Chem. 2017, 37, 1392-1397; f) S. Fiorito, F.
Epifano, V. A. Taddeo, S. Genovese, L. Sancineto, C.
Santi, Planta Med. 2016, 82, P732; g) A. A. Vieira, J.
B. Azeredo, M. Godoi, C. Santi, E. N. da Silva Jr., A. L.
Braga, J. Org. Chem. 2015, 80, 2120–2127.
[2] a) Y. Wang, L. Yu, B. Zhu, L. Yu, J. Mater. Chem. A
2016, 4, 10828–10833; b) L. Yu, Z. Bai, X. Zhang, X.
Zhang, Y. Ding, Q. Xu, Catal. Sci. Technol. 2016, 6,
1804–1809; c) L. Yu, J. Ye, X. Zhang, Y. Ding, Q. Xu,
Catal. Sci. Technol. 2015, 5, 4830–4838; d) L. Yu, H.
Li, X. Zhang, J. Ye, J. Liu, Q. Xu, M. Lautens, Org.
Lett. 2014, 16, 1346−1349.
[3] Se is metabolizable and does not accumulate in the
organisms: a) M. P. Rayman, Lancet 2012, 379, 1256–
1268; On the other hand, although Se compounds may
be toxic, organoselenium compounds are generally less
toxic than the inorganic ones. Some are even non-toxic
(such as diphenyl diselenide and ebselen): a) F. C.
[8] G. Zhang, X. Wen, Y. Wang, W. Mo, C. Ding, Prog.
Chem. 2012, 24, 361–369 and references cited therein.
7
This article is protected by copyright. All rights reserved.