Edge Article
Chemical Science
¨
¨
to the substrate by BIc and hydrogen atom transfer to the
8 M. Neumann, S. Fuldner, B. Konig and K. Zeitler, Angew.
substrate radical by BIH.
Chem., Int. Ed., 2011, 50, 951–954.
9 K. Dedeian, P. I. Djurovich, F. O. Garces, G. Carlson and
R. J. Watts, Inorg. Chem., 1991, 30, 1685–1687.
10 J. D. Nguyen, E. M. D'Amato, J. M. R. Narayanam and
C. R. J. Stephenson, Nat. Chem., 2012, 4, 854–859.
Conclusions
We have demonstrated that bis-cyclometalated iridium
complexes with b-diketiminate ancillary ligands are versatile 11 E. D. Nacsa and D. W. C. MacMillan, J. Am. Chem. Soc., 2018,
photosensitizers for a variety of photoredox transformations. 140, 3322–3330.
The highly reducing nature of their excited state permits an 12 H. Kim and C. Lee, Angew. Chem., Int. Ed., 2012, 51, 12303–
expansion of the substrate scope to challenging organobromide
12306.
and organochloride substrates, which traditionally are inert to 13 S. O. Poelma, G. L. Burnett, E. H. Discekici, K. M. Mattson,
photoredox catalysis or require forcing, complex reaction
conditions to activate. These reactions generate an organic
radical following photoinduced electron transfer, and the fate
N. J. Treat, Y. Luo, Z. M. Hudson, S. L. Shankel,
P. G. Clark, J. W. Kramer, C. J. Hawker and J. Read de
Alaniz, J. Org. Chem., 2016, 81, 7155–7160.
of this radical depends on the nature of the substrate and the 14 R. Matsubara, T. Yabuta, U. Md Idros, M. Hayashi, F. Ema,
reaction conditions. In most cases under typical reaction Y. Kobori and K. Sakata, J. Org. Chem., 2018, 83, 9381–9390.
conditions, hydrodehalogenation is the outcome, which estab- 15 T.-H. Ding, J.-P. Qu and Y.-B. Kang, Org. Lett., 2020, 22, 3084–
lishes the breadth of the substrate scope enabled by these
3088.
reaction conditions. If the substrate has an appropriately posi- 16 K. Li, Q. Wan, C. Yang, X.-Y. Chang, K.-H. Low and
tioned aryl or alkenyl group, radical cyclization is possible, and C.-M. Che, Angew. Chem., Int. Ed., 2018, 57, 14129–14133.
reactions conducted in the presence of a second radical trap 17 L. Zhang, Z. Wu and L. Jiao, Angew. Chem., Int. Ed., 2020, 59,
substrate can result in bimolecular functionalization. Overall, 2095–2099.
this work motivates the continued pursuit of designer photo- 18 A. R. Flynn, K. A. McDaniel, M. E. Hughes, D. B. Vogt and
catalysts and modied photoredox reaction conditions that will N. T. Jui, J. Am. Chem. Soc., 2020, 142, 9163–9168.
allow a much wider range of cheap, readily available substrates 19 P. Zhang, C. (Chip) Le and D. W. C. MacMillan, J. Am. Chem.
to be used in synthetically valuable photoredox
transformations.
Soc., 2016, 138, 8084–8087.
20 J. J. Devery, J. D. Nguyen, C. Dai and C. R. J. Stephenson, ACS
Catal., 2016, 6, 5962–5967.
¨
21 I. Ghosh, T. Ghosh, J. I. Bardagi and B. Konig, Science, 2014,
Conflicts of interest
346, 725–728.
There are no conicts to declare.
22 I. A. MacKenzie, L. Wang, N. P. R. Onuska, O. F. Williams,
K. Begam, A. M. Moran, B. D. Dunietz and D. A. Nicewicz,
Nature, 2020, 580, 76–80.
23 C. Kerzig, X. Guo and O. S. Wenger, J. Am. Chem. Soc., 2019,
141, 2122–2127.
Acknowledgements
We acknowledge the National Science Foundation (NSF) (CHE-
1846831 to T. S. T. and CHE-1453891 to J. D. W.) for support. T. 24 C. Kerzig and O. S. Wenger, Chem. Sci., 2019, 10, 11023–
S. T. also acknowledges the Welch Foundation (Grant No. E- 11029.
1887) for funding this research. We thank Prof. Loi Do for 25 H. Kim, H. Kim, T. H. Lambert and S. Lin, J. Am. Chem. Soc.,
access to the gas chromatography.
2020, 142, 2087–2092.
26 N. G. W. Cowper, C. P. Chernowsky, O. P. Williams and
Z. K. Wickens, J. Am. Chem. Soc., 2020, 142, 2093–2099.
27 W. Sattler, M. E. Ener, J. D. Blakemore, A. A. Rachford,
P. J. LaBeaume, J. W. Thackeray, J. F. Cameron,
J. R. Winkler and H. B. Gray, J. Am. Chem. Soc., 2013, 135,
10614–10617.
Notes and references
1 C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev.,
2013, 113, 5322–5363.
2 T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath,
¨
T. S. Teets and D. G. Nocera, Chem. Rev., 2010, 110, 6474– 28 L. A. Buldt, X. Guo, A. Prescimone and O. S. Wenger, Angew.
6502. Chem., Int. Ed., 2016, 55, 11247–11250.
3 T. S. Teets and D. G. Nocera, Chem. Commun., 2011, 47, 9268– 29 P. Herr, F. Glaser, L. A. Buldt, C. B. Larsen and O. S. Wenger,
9274. J. Am. Chem. Soc., 2019, 141, 14394–14402.
4 M. Chen, M. Zhong and J. A. Johnson, Chem. Rev., 2016, 116, 30 E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson,
¨
10167–10211.
Z. M. Hudson, Y. Luo, C. J. Hawker and J. R. de Alaniz,
Chem. Commun., 2015, 51, 11705–11708.
31 J.-H. Shon and T. S. Teets, Inorg. Chem., 2017, 56, 15295–
15303.
5 D. A. Nagib and D. W. C. MacMillan, Nature, 2011, 480, 224–
228.
6 E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher,
D. A. DiRocco, I. W. Davies, S. L. Buchwald and 32 J.-H. Shon, S. Sittel and T. S. Teets, ACS Catal., 2019, 8646–
D. W. C. MacMillan, Science, 2016, 353, 279–283.
8658.
7 D. M. Schultz and T. P. Yoon, Science, 2014, 343, 1239176.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Chem. Sci., 2021, 12, 4069–4078 | 4077