J IRAN CHEM SOC (2013) 10:453–460
459
10. P. Gamez, I.W.C.E. Arends, R.A. Sheldon, J. Reedijk, Adv.
Synth. Catal. 346, 805 (2004)
11. B. Guan, D. Xing, G. Cai, X. Wan, N. Yu, Z. Fang, L. Yang, Z.
Shi, J. Am. Chem. Soc. 127, 18004 (2005)
12. B.M. Choudary, M.L. Kantam, A. Rahman, C.V. Reddy, K.K.
Rao, Angew. Chem. Int. Ed. 40, 763 (2001)
13. N. Wang, R. Liu, J. Chen, X. Liang, Chem. Commun. 14(42),
5322–5324 (2005)
14. C. Dobler, G.M. Mehltretter, U. Sundermeier, M. Eckert, H.C.
Militzer, M. Beller, Tetrahedron Lett. 42, 8447 (2001)
15. P.A. Shapley, N. Zhang, J.L. Allen, D.H. Pool, H.C. Liang, J.
Am. Chem. Soc. 122, 1079 (2000)
16. N. Kakiuchi, Y. Maeda, T. Nishimura, S. Uemura, J. Org. Chem.
66, 662 (2001)
17. B.A. Steinhoff, S.S. Stahl, J. Am. Chem. Soc. 128, 4348 (2006)
18. D.D. Caspi, D.C. Ebner, J.T. Bagdanoff, B.M. Stoltz, Adv. Synth.
Catal. 346, 185 (2004)
19. H. Shimizu, S. Onitsuka, H. Egami, T. Katsuki, J. Am. Chem.
Soc. 127, 5396 (2005)
process involved the removal of the upper layer of methyl-
cyclohexane (oil layer), containing product, by decantation
and concentration of the under layer of catalytic system
(aqueous layer) by removing the water through a water
knockout drum. Fresh substrates and methylcyclohexane
were then recharged to the residual PEG1000-DIL and
(NH4)6Mo7O24Á4H2O and then recycled. The PEG1000-DIL
plays a very important role in the oxidation process to locally
concentrate the reacting species near them by exhibiting a
temperature-dependent phase behavior with methylcyclo-
hexane (i.e., the thermoregulated biphasic behavior of
mono-phase under high temperature and bi-phase under
room temperature), which leads to a large increase in the
effective reactant concentration and the excellent results of
oxidation.
20. K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 41, 4538
(2002)
21. S. Velusamy, M. Ahamed, T. Punniyamurthy, Org. Lett. 6, 4821
(2004)
Conclusion
22. S. Velusamy, T. Punniyamurthy, Org. Lett. 6, 217 (2004)
23. N. Jiang, A.J. Ragauskas, Tetrahedron Lett. 48, 273 (2007)
24. K.S. Coleman, M. Coppe, C. Thomas, J.A. Osborn, Tetrahedron
Lett. 40, 3723 (1999)
25. J. Muldoon, S.N. Brown, Org. Lett. 4, 1043 (2002)
26. S.S. Kim, H.C. Jung, Synthesis, 14, 2135 (2003)
27. C.W. Jones, J.H. Clark, Applications of hydrogen peroxide and
derivatives (Royal Society of Chemistry, UK, 1999)
28. L. Marinescu, M. Molbach, C. Rousseau, M. Bols, J. Am. Chem.
Soc. 127, 17578 (2005)
29. Y. Kon, Y. Usui, K. Sato, Chem. Commun. 14(42), 4399 (2007)
30. A.A. Linden, M. Johansson, N. Hermanns, J.E. Backvall, J. Org.
Chem. 71, 3849 (2006)
31. T. Hida, H. Nogusa, Tetrahedron 65, 270 (2009)
32. F. Shi, M.K. Tse, M. Beller, Adv. Synth. Catal. 349, 303 (2007)
33. F. van Rantwijk, R.A. Sheldon, Chem. Rev. 107, 2757 (2007)
34. P. Wasserschein, T. Welton, Ionic liquids in synthesis (Wiley-
VCH, Weinhein, 2003)
In conclusion, we have developed an efficient method
for oxidation of primary and secondary alcohols to the
corresponding aldehydes and ketones with H2O2/(NH4)6
Mo7O24Á4H2O using the PEG1000-DIL/methylcyclohexane
temperature-dependent biphasic system. Mild reaction
conditions, easy workup, high yields, stability, easy isola-
tion of the compounds, good thermoregulated biphasic
behavior of the IL, and excellent recyclability of the cata-
lytic system are the attractive features of this methodology.
Further aspects of the catalysis and the application to other
organic synthesis are under investigation.
Acknowledgments We thank the National Basic Research Program
(973) of China and Natural Science Foundation of Jiangsu Province
for support of this research.
35. M.A.P. Martins, C.P. Frizzo, D.N. Moreira, N. Zanatta, H.G.
Bonacorso, Chem. Rev. 108, 2015 (2008)
36. F.F. Yang, H.Y. Guo, Z.Y. Jiao, C.C. Li, J.Q. Ye, J. Iran. Chem.
Soc. 9, 327 (2012)
37. N.J. Roberts, G.J. Lye, Application of room temperature ionic
liquids in biocatalysis: opportunities and challenges (American
Chemical Society, Washington, DC, 2002)
38. D.R. MacFarlane, M. Forsyth, P.C. Howlett, J.M. Pringle, J.Z. Sun,
G. Annat, W. Neil, E.I. Izgorodina, Acc. Chem. Res. 40, 1165 (2007)
39. Y.J. Meng, V. Pino, J.L. Anderson, Anal. Chem. 81, 7107 (2009)
40. T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 46, 4222 (2007)
41. Z. Xi, N. Zhou, Y. Sun, K. Li, Science 292, 1139 (2001)
42. J.A. Gladysz, Chem. Rev. 102, 3215 (2002)
43. S. Sunitha, S. Kanjilal, P.S. Reddy, B.N. Rachapudi, Tetrahedron
Lett. 48, 6962 (2007)
References
1. T. Mallat, A. Baiker, Chem. Rev. 104, 3037 (2004)
2. M. Hudlick, Oxidations in organic chemistry (American Chem-
ical Society, Washington, DC, 1990)
3. J. March, Advanced organic chemistry: reactions, mechanisms,
and structure (John Wiley and Sons, New York, 1992)
4. A. Ghorbani-Choghamarani, G. Azadi, J. Iran. Chem. Soc. 8,
1082 (2011)
5. A.R. Hajipour, L. Khazdooz, A.E. Ruoho, J. Iran. Chem. Soc. 8,
382 (2011)
44. A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran, K.J. Weaver, D.C.
Forbes, J.H. Davis, J. Am. Chem. Soc. 124, 5962 (2002)
45. B. Tan, J.Y. Jiang, Y.H. Wang, L. Wei, D.J. Chen, Z.L. Jin, Appl.
Organomet. Chem. 22, 620 (2008)
46. Y. Leng, J. Wang, D.R. Zhu, X.Q. Ren, H.Q. Ge, L. Shen,
Angew. Chem. Int. Ed. 48, 168 (2009)
6. A.K. Mandal, J. Iqbal, Tetrahedron 53, 7641 (1997)
7. V.B. Sharma, S.L. Jain, B. Sain, J. Mol. Catal. A: Chem. 212, 55
(2004)
8. P. Chaudhuri, M. Hess, J. Mueller, K. Hildenbrand, E. Bill, T.
Weyhermueller, K. Wieghardt, J. Am. Chem. Soc. 121, 9599
(1999)
47. H.Z. Zhi, J. Luo, W. Ma, C.X. Lu, Chem. J. Chin. Univ. 29, 2007
(2008)
9. I.E. Marko, P.R. Giles, M. Tsukazaki, R.I. Chelle, A. Gautier,
S.M. Brown, C.J. Urch, J. Org. Chem. 64, 2433 (1999)
123