Table 1 Deprotection of allyl esters catalysed by Montmorillonite
reaction mixture was diluted with chloroform and washed with
K-10
1 M NaOH (3–4 times). The aqueous layer was separated and
acidified with dilute HCl. The acidified aqueous layer was
extracted with organic solvent to obtain the corresponding acid
in pure form. The chloroform layer was washed with brine,
dried and concentrated to get crude alkylated product, which
was purified by column chromatography over silica gel. Pure
monoalkylated product was obtained in moderate yield.
Thermal
Microwave
Yield Time/ Yield
Entry Allyl esters
Time/h (%)a
min
(%)a
In conclusion, the present method provides a useful altern-
ative for deprotection of allyl esters. The notable advantages of
this methodology are mild and solvent free conditions, short
reaction time (10 to 20 min), chemoselectivity and its environ-
mental friendly conditions. We believe this will serve as a useful
addition to modern organic synthetic methodologies.
1
6
94
20
96
2
3
4
5
94b
80
20
20
20
98
85
97
8.5
8.5
90b
Acknowledgements
5
6
14
60b,c
62b,c
20
10
70c
70c
The authors B. K. B. and A. S. G. would like to express their
sincere thanks to the Director, NCL for providing research
facilities and to the trustees of Lady Tata Memorial Trust,
Mumbai for a research fellowship to NSS.
14
References
7
10
87
10
92
1 T. W. Green and P. G. M. Wuts, Protective Groups in Organic Syn-
thesis, 2nd edn., John Wiley & Sons Inc., New York, 1991.
2 V. H. Rinderknecht and V. Ma, Helv. Chim. Acta, 1964, 47, 162.
3 P. G. Gassman, P. K. G. Hodgson and R. J. Balchunis, J. Am. Chem.
Soc., 1976, 98, 1275.
4 For example, (a) A. I. Mayers and P. J. Reider, J. Am. Chem. Soc.,
1979, 101, 2501; (b) P. A. Zoretic, P. Soja and W. E. Conrad, J. Org.
Chem., 1975, 40, 2962; (c) E. J. Corey and C. V. Kim, J. Org. Chem.,
1973, 38, 1233.
8
9
10
8
85
92
10
20
90
97
10
8.5
90
20
95
5 S. E. Bochnitschek, H. Waldmann and H. Kunz, J. Org. Chem.,
1989, 54, 751.
6 (a) L. N. Jungheim, Tetrahedron Lett., 1989, 30, 1889; (b) H. X.
Zhang, F. Guibe and G. Balavonie, Tetrahedron Lett., 1988, 28, 623;
(c) H. Kunz and H. Waldmann, Helv. Chim. Acta, 1985, 68, 618;
(d) T. L. Ho, Synth. Commun., 1978, 8, 359.
11
12
8.5
8
92
90
20
20
95
97
7 C. R. Schmid, Tetrahedron Lett., 1992, 32, 757.
8 S. P. Chavan, P. K. Zubaidha, S. W. Dantale, A. Keshavaraja, A. V.
Ramaswamy and T. Ravindranathan, Tetrahedron Lett., 1996, 37,
237.
9 (a) A. G. M. Barrett, S. A. Lebold and X. A. Zhang, Tetrahedron
Lett., 1989, 30, 7317; (b) R. O. Garry and M. C. Cabaleiro, J. Chem.
Soc., Perkin Trans. 2, 1988, 1643.
13
10
85
10
90
10 A. S. Gajare, M. S. Shingare, V. R. Kulkarni, N. B. Barhate and
R. D. Wakharkar, Synth. Commun.,1998, 28, 25.
11 J. H. Clark and D. Macquarrie, J. Chem. Soc. Rev., 1996, 303, and
references cited therein.
14
15
10
15
87
87
10
20
92
97
12 P. Laszlo, Pure Appl. Chem., 1990, 62, 2027.
13 (a) B. M. Chaudary, S. S. Rani, Y. V. Subba Rao and M. Laksmikan-
tam, J. Chem. Soc., Perkin Trans. 1, 1991, 2274; (b) B. M. Chaudary,
A. Durga Prasad, V. Bhuma and V. Swapna, J. Org. Chem., 1992, 57,
5841.
14 M. Onaka, R. Ohno, N. Yanagiya and Y. Izumi, Synlett, 1993, 141.
15 C. Cativiela, J. M. Fraile, J. I. Garcia, J. A. Mayoral, E. Pires and
F. Figueras, J. Mol. Catal., 1994, 89, 159.
16
9
80
20
85
17
18
10
20
47
20
20
60c
72c
16 K. Toshima, T. Ishizuka and M. Matsuo, Synlett, 1995, 306.
17 C. W. Lee and H. Alper, J. Org. Chem., 1995, 60, 250.
18 T.-S. Li and A.-X. Li, J. Chem. Soc., Perkin Trans. 1, 1998, 1913.
19 For recent reviews, see (a) A. Cornelis and P. Laszlo, Synlett, 1994,
155; (b) M. Balogh and P. Laszlo, Organic Chemistry Using Clays,
Springer–Verlag, New York, 1993, and references cited therein.
20 S. Caddik, Tetrahedron, 1995, 51, 10403, and references cited
therein.
21 (a) R. S. Varma and R. Dahiya, Tetrahedron, 1998, 54, 6293; (b) R.
S. Varma, K. P. Naicker and P. J. Liesen, Tetrahedron Lett., 1998, 39,
8437; (c) R. S. Varma, A. K. Chatterjee and M. Varma, Tetrahedron
Lett., 1993, 34, 4603, and references cited therein.
67b,c
19
20
20
20
0
0
20
20
0
0
a Isolated yield characterized by mp, IR, H NMR and MS. b Yields
without the addition of nucleophile. c Essentially only the starting
material remained.
1
22 (a) R. S. Varma and A. K. Chatterjee, J. Chem. Soc., Perkin Trans. 1,
1993, 999; (b) D. Vellemin and A. B. Alloum, Synth. Commun., 1991,
21, 63; (c) R. S. Varma and H. M. Meshram, Tetrahedron Lett.,
1997, 38, 5427, and references cited therein.
The reaction was monitored by TLC. After the completion of
the reaction, this mixture was cooled to room temperature and
the catalyst was separated by filtration. The reaction mixture
was concentrated to remove excess toluene under vacuum. The
Communication a909265j
640
J. Chem. Soc., Perkin Trans. 1, 2000, 639–640