RSC Advances
Paper
program was as follows: 45 ꢀC for 3 min, ramp to 280 ꢀC at 4 ꢀC
minꢁ1, and hold for 10 min. The ow rate was set to 1 mL minꢁ1
using helium as the carrier gas. The inlet was maintained at
5 M. Wang, J. Lu, X. Zhang, L. Li, H. Li, N. Luo and F. Wang,
ACS Catal., 2016, 6, 6086–6090.
6 L. Balducci, D. Bianchi, R. Bortolo, R. D'Aloisio, M. Ricci and
R. Tassinari, Angew. Chem., 2003, 115, 5087–5090.
7 C. S. Lanceeld, O. S. Ojo, F. Tran and N. J. Westwood,
Angew. Chem., 2015, 127, 260–264.
8 A. Rahimi, A. Ulbrich, J. J. Coon and S. S. Stahl, Nature, 2014,
515, 249–252.
9 N. D. Patil, S. G. Yao, M. S. Meier, J. K. Mobley and
M. Crocker, Org. Biomol. Chem., 2015, 13, 3243–3254.
ꢀ
260 C, and the MS source was set at 70 eV. An external cali-
bration curve of anisole or dodecane was used to calibrate BVO
products in the reaction mixture. Analysis of lignin model
dimer compounds proved difficult (due to the low response
factors observed for oxidized dimer model compounds). In lieu
1
of calibrated GCMS yields, H-NMR spectroscopy with a ferro-
cene internal standard was used to determine product yields.
¨
10 J. Mottweiler, M. Puche, C. Rauber, T. Schmidt,
´
P. Concepcion, A. Corma and C. Bolm, ChemSusChem,
4. Conclusions
2015, 8, 2106.
The tin beta zeolite/H2O2 oxidation system was applied to 2- 11 Y. Gao, J. Zhang, X. Chen, D. Ma and N. Yan, ChemPlusChem,
adamantanone, several acetophenone derivatives and oxidized 2014, 79, 825.
lignin b-O-4 and b-1 linkage models. Selective aryl migration 12 M. R. Sturgeon, M. H. O'Brien, P. N. Ciesielski, R. Katahira,
was observed in all cases excluding anisoin, where both aryl and
alkyl migration were observed. The oxidation system presented
in this work yields esters that can be cleaved in a simple
J. S. Kruger, S. C. Chmely, J. Hamlin, K. Lawrence,
G. B. Hunsinger, T. D. Foust, R. M. Baldwin, M. J. Biddy
and G. T. Beckham, Green Chem., 2014, 16, 824.
hydrolysis reaction, yielding phenolic moieties that are typically 13 J. S. Kruger, N. S. Cleveland, S. Zhang, R. Katahira,
difficult to isolate from b-O-4 oxidation reactions. Yields of ester
products derived from b-O-4 and b-1 lignin models were
B. A. Black, G. M. Chupka, T. Lammens, P. G. Hamilton,
M. J. Biddy and G. T. Beckham, ACS Catal., 2016, 6, 1316.
generally modest due to the formation of polymeric material 14 J. Dijkmans, W. Schutyser, M. Dusselier and B. Sels, Chem.
stemming from direct ring hydroxyl. While preventing the Commun., 2016, 52, 6712–6715.
formation of byproducts is challenging, if the reaction were run 15 A. Corma, V. Fornes, S. Iborra, M. A. Mifsud and M. Renz, J.
at low conversion (shorter residence time and/or lower
Catal., 2004, 221, 67–76.
temperature) then the selectivity should increase due to 16 S. P. Panchgalle, U. R. Kalkote, P. S. Niphadkar, P. N. Joshi,
´
decreased ring hydroxylation and resin formation. Naturally,
this would require a means for separating the products and
S. P. Chavan and G. M. Chaphekar, Green Chem., 2004, 6,
308–309.
starting material, so that the latter could be recycled. To our 17 A. Corma, M. E. Domine, L. Nemeth and S. Valencia, J. Am.
knowledge, this is the rst report of heterogeneous BVO of
Chem. Soc., 2002, 124, 3194–3195.
lignin model dimer compounds.
18 P. Li, G. Liu, H. Wu, Y. Liu, J.-G. Jiang and P. Wu, J. Phys.
Chem. C, 2011, 115, 3663–3670.
19 R. Bermejo-Deval, R. Gounder and M. E. Davis, ACS Catal.,
2012, 2, 2705–2713.
Acknowledgements
This material is based on work supported by the National 20 B. Tang, W. Dai, G. Wu, N. Guan, L. Li and M. Hunger, ACS
Science Foundation under Cooperative Agreement No. 1355438. Catal., 2014, 4, 2801–2810.
Funding from the British Council under the Global Innovation 21 J. Dijkmans, J. Demol, K. Houthoofd, S. Huang, Y. Pontikes
Initiative for the GB3-Net project is also gratefully acknowl-
and B. Sels, J. Catal., 2015, 330, 545–557.
edged. The single-crystal diffractometer was funded by the NSF 22 J. Jin, X. Ye, Y. Li, Y. Wang, L. Li, J. Gu, W. Zhao and J. Shi,
(MRI CHE-0319176). Diffuse reectance UV-Vis spectra were Dalton Trans., 2014, 43, 8196–8204.
measured at the Center for Nanophase Materials Sciences, 23 A. Corma, M. T. Navarro and M. Renz, J. Catal., 2003, 219,
which is a DOE Office of Science User Facility. The authors
242–246.
would also like to thank Shelley Hopps, Dr Mark Meier, Dr 24 A. V. Yakimov, Y. G. Kolyagin, S. Tolborg, P. N. Vennestrøm
Justin Mobley, Yang Song, Gerald Thomas, and Soledad Yao for
their help in the preparation of this manuscript.
and I. I. Ivanova, J. Phys. Chem. C, 2016, 120, 28083–28092.
25 R. Bermejo-Deval, R. S. Assary, E. Nikolla, M. Moliner,
´
Y.
Roman-Leshkov,
S.-J.
Hwang,
A.
Palsdottir,
D. Silverman, R. F. Lobo and L. A. Curtiss, Proc. Natl. Acad.
Sci. U. S. A., 2012, 109, 9727–9732.
References
1 A. Barakat, A. Bagniewska-Zadworna, C. J. Frost and 26 C. Gambarotti and J. R. Bjørsvik, J. Phys. Org. Chem., 2015,
J. E. Carlson, BMC Plant Biol., 2010, 10, 1–11.
28, 619–628.
2 J. Zakzeski, A. L. Jongerius, P. C. A. Bruijnincx and 27 L. Reyes, J. R. Alvarez-Idaboy and N. Mora-Diez, J. Phys. Org.
B. M. Weckhuysen, ChemSusChem, 2012, 5, 1602–1609. Chem., 2009, 22, 643–649.
3 A. Rahimi, A. Azarpira, H. Kim, J. Ralph and S. S. Stahl, J. Am. 28 M. Renz and B. Meunier, Eur. J. Org. Chem., 1999, 737–750.
Chem. Soc., 2013, 135, 6415–6418.
4 A. Wu, B. O. Patrick, E. Chungand and B. R. James, Dalton
Trans., 2012, 41, 11093–11106.
29 G. Buechi and S. M. Weinreb, J. Am. Chem. Soc., 1971, 93,
746–752.
30 Bruker, APEX2, Bruker-AXS, Madison WI, USA, 1992.
25996 | RSC Adv., 2017, 7, 25987–25997
This journal is © The Royal Society of Chemistry 2017