Organometallics
Article
Remarkable Effect of Bimetallic Nanocluster Catalysts for Aerobic
Oxidation of Alcohols: Combining Metals Changes the Activities and
the Reaction Pathways to Aldehydes/Carboxylic Acids or Esters. J.
Am. Chem. Soc. 2010, 132, 15096. (d) Hoover, J. M.; Stahl, S. S.
Highly Practical Copper(I)/TEMPO Catalyst System for Chemo-
selective Aerobic Oxidation of Primary Alcohols. J. Am. Chem. Soc.
2011, 133, 16901. (e) Ray, R.; Chandra, S.; Maiti, D.; Lahiri, G. K.
Simple and Efficient Ruthenium-Catalyzed Oxidation of Primary
Alcohols with Molecular Oxygen. Chem. - Eur. J. 2016, 22, 8814.
(f) Brink, G. J. T.; Arends, I. W. C. E.; Sheldon, R. A Green, Catalytic
Oxidation of Alcohols in Water. Science 2000, 287, 1636.
(9) (a) Wu, X. F.; Bheeter, C. B.; Neumann, H.; Dixneuf, P. H.;
Beller, M. Lewis acid-catalyzed oxidation of benzylamines to
benzamides. Chem. Commun. 2012, 48, 12237−12239. (b) Srogl, J.;
Voltrova, S. Copper/Ascorbic Acid Dyad as a Catalytic System for
Selective Aerobic Oxidation of Amines. Org. Lett. 2009, 11, 4.
(10) (a) Patil, R. D.; Adimurthy, S. Copper-Catalyzed Aerobic
Oxidation of Amines to Imines under Neat Conditions with Low
Catalyst Loading. Adv. Synth. Catal. 2011, 353, 1695. (b) Huang, H.;
Huang, J.; Liu, Y. M.; He, H. Y.; Cao, Y.; Fan, K. N. Graphite oxide as
an efficient and durable metal-free catalyst for aerobic oxidative
coupling of amines to imines. Green Chem. 2012, 14, 930. (c) Wang,
Y.; Kobayashi, H.; Yamaguchi, K.; Mizuno, N. Manganese oxide-
catalyzed transformation of primary amines to primary amides
through the sequence of oxidative dehydrogenation and successive
hydration. Chem. Commun. 2012, 48, 2642. (d) Su, F.; Antonietti, M.;
Wang, X.; Mathew, S. C.; Moehlmann, L.; Blechert, S. Aerobic
oxidative coupling of amines by carbon nitride photocatalysis with
visible light. Angew. Chem., Int. Ed. 2011, 50, 657.
(11) Hazra, S.; Deb, M.; Singh, J.; Elias, A. J. Picolinamide as a
Directing Group on Metal Sandwich Compounds: sp2 C−H Bond
Activation and sp3 C−H Bond Oxidation. Organometallics 2017, 36,
1784−1794.
(12) (a) Dubar, F.; Khalife, J.; Brocard, J.; Dive, D.; Biot, C.
Ferroquine an Ingenious Antimalarial Drug − Thoughts on the
Mechanism of Action. Molecules 2008, 13, 2900−2907. (b) van
Staveren, D. R.; Metzler-Nolte, N. Bioorganometallic Chemistry of
Ferrocene. Chem. Rev. 2004, 104, 5931. (c) Braga, S. S.; Silva, A. M. S.
A New Age for Iron: Antitumoral Ferrocenes. Organometallics 2013,
32, 5626−5630. (d) Hillard, E.; Vessieres, A.; Thouin, L.; Jaouen, G.;
Amatore, C. Ferrocene-mediated proton-coupled electron transfer in
a series of ferrocifen-type breast-cancer drug candidates. Angew. Chem.
2006, 118, 291−294.
(13) (a) Sun, R.; Wang, L.; Yu, H.; Abdin, Z.; Chen, Y.; Huang, J.;
Tong, R. Molecular Recognition and Sensing Based on Ferrocene
Derivatives and Ferrocene-Based Polymers. Organometallics 2014, 33,
4560−4573. (b) Xie, S.; Zang, J.; Yuan, Y.; Chi, Y.; Yuan, R. An
electrochemical peptide cleavage-based biosensor for prostate specific
antigen detection via host−guest interaction between ferrocene and β-
cyclodextrin. Chem. Commun. 2015, 51, 3387−3390. (c) Arivazhagan,
C.; Borthakur, R.; Ghosh, S. Ferrocene and Triazole-Appended
Rhodamine Based Multisignaling Sensors for Hg2+ and Their
Application in Live Cell Imaging. Organometallics 2015, 34, 1147−
1155.
(14) (a) Dai, L. X.; Hou, X. L. Chiral Ferrocenes in Asymmetric
Catalysis: Synthesis and Applications; Wiley-VCH: Weinheim, 2010.
(b) Siegel, S.; Schmalz, H. G. Insertion of Carbenoids into Cp-H
Bonds of Ferrocenes: An Enantioselective-Catalytic Entry to Planar-
Chiral Ferrocenes. Angew. Chem., Int. Ed. Engl. 1997, 36, 2456.
(15) (a) Geiger, W. E. Organometallic Electrochemistry: Origins,
Development, and Future. Organometallics 2007, 26, 5738−5765.
(b) Tamura, K.; Akutagawa, N.; Satoh, M.; Wada, J.; Masuda, T.
Charge/Discharge Properties of Organometallic Batteries Fabricated
with Ferrocene−Containing Polymers. Macromol. Rapid Commun.
2008, 29, 1944−1949. (c) Lopez, E.; Lonzi, G.; Lopez, L. A. Gold-
Catalyzed C−H Bond Functionalization of Metallocenes: Synthesis of
Densely Functionalized Ferrocene Derivatives. Organometallics 2014,
33, 5924−5927. (d) Lopez, E.; Borge, J.; Lopez, L. A. Gold-Catalyzed
Intermolecular Formal Insertion of Aryldiazo Esters into Cp-H Bonds
of Iron and Ruthenium Metallocenes. Chem. - Eur. J. 2017, 23, 3091−
3097.
(4) (a) Zweifel, T.; Naubron, J. V.; Grutzmacher, H. Catalyzed
̈
Dehydrogenative Coupling of Primary Alcohols with Water,
Methanol, or Amines. Angew. Chem., Int. Ed. 2009, 48, 559.
(b) Balaraman, E.; Khaskin, E.; Leitus, G.; Milstein, D. Catalytic
transformation of alcohols to carboxylic acid salts and H2 using water
as the oxygen atom source. Nat. Chem. 2013, 5, 122. (c) Hu, P.; Ben-
David, Y.; Milstein, D. General Synthesis of Amino Acid Salts from
Amino Alcohols and Basic Water Liberating H2. J. Am. Chem. Soc.
2016, 138, 6143. (d) Sarbajna, A.; Dutta, I.; Daw, P.; Dinda, S.;
Rahaman, M. W.; Sarkar, A.; Bera, J. K. Catalytic Conversion of
Alcohols to Carboxylic Acid Salts and Hydrogen with Alkaline Water.
ACS Catal. 2017, 7, 2786.
(5) (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct synthesis
of amides from alcohols and amines with liberation of H2. Science
2007, 317, 790. (b) Khusnutdinova, J. R.; Ben-David, Y.; Milstein, D.
Oxidant-Free Conversion of Cyclic Amines to Lactams and H2 Using
Water As the Oxygen Atom Source. J. Am. Chem. Soc. 2014, 136,
2998. (c) Gellrich, U.; Khusnutdinova, J. R.; Leitus, G. M.; Milstein,
D. J. Am. Chem. Soc. 2015, 137, 4851. (d) Zultanski, S. L.; Zhao, J.;
Stahl, S. S. Practical Synthesis of Amides via Copper/ABNO-
Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines. J.
Am. Chem. Soc. 2016, 138, 6416. (e) Chen, C.; Verpoort, F.; Wu, Q.
Atom-economic dehydrogenative amide synthesis via ruthenium
catalysis. RSC Adv. 2016, 6, 55599. (f) de Figueiredo, R. M.;
Suppo, J. S.; Campagne, J. M. Nonclassical Routes for Amide Bond
Formation. Chem. Rev. 2016, 116, 12029.
(6) (a) Gunanathan, C.; Shimon, L. J. W.; Milstein, D. Direct
Conversion of Alcohols to Acetals and H2Catalyzed by an Acridine-
Based Ruthenium Pincer Complex. J. Am. Chem. Soc. 2009, 131, 3146.
(7) (a) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Facile
conversion of alcohols into esters and dihydrogen catalyzed by new
ruthenium complexes. J. Am. Chem. Soc. 2005, 127, 10840. (b) Liu,
C.; Wang, J.; Meng, L. K.; Deng, Y.; Li, Y.; Lei, A. W. Palladium-
Catalyzed Aerobic Oxidative Direct Esterification of Alcohols. Angew.
Chem., Int. Ed. 2011, 50, 5144. (c) Gowrisankar, S.; Neumann, H.;
Beller, M. General and selective palladium-catalyzed oxidative
esterification of alcohols. Angew. Chem., Int. Ed. 2011, 50, 5139.
(d) Jagadeesh, R. V.; Junge, H.; Pohl, M. M.; Radnik, J.; Bruckner, A.;
̈
Beller, M. Selective Oxidation of Alcohols to Esters Using
Heterogeneous Co3O4−N@C Catalysts under Mild Conditions. J.
Am. Chem. Soc. 2013, 135, 10776. (e) Xiao, Q.; Liu, Z.; Bo, A.;
Zavahir, S.; Sarina, S.; Bottle, S.; Riches, J. D.; Zhu, H. Y. Catalytic
Transformation of Aliphatic Alcohols to Corresponding Esters in O2
under Neutral Conditions Using Visible-Light Irradiation. J. Am.
Chem. Soc. 2015, 137, 1956. (f) Ray, R.; Jana, R. D.; Bhadra, M.;
Maiti, D.; Lahiri, G. K. Efficient and Simple Approaches Towards
Direct Oxidative Esterification of Alcohols. Chem. - Eur. J. 2014, 20,
15618. (g) Powell, A. B.; Stahl, S. S. Aerobic Oxidation of Diverse
Primary Alcohols to Methyl Esters with a Readily Accessible
Heterogeneous Pd/Bi/Te Catalyst. Org. Lett. 2013, 15, 5072.
(h) Mannel, D. S.; Ahmed, M. S.; Root, T. W.; Stahl, S. S. Discovery
of Multicomponent Heterogeneous Catalysts via Admixture Screen-
ing: PdBiTe Catalysts for Aerobic Oxidative Esterification of Primary
Alcohols. J. Am. Chem. Soc. 2017, 139, 1690.
(16) (a) Li, Y.; Josowicz, M.; Tolbert, L. M. Diferrocenyl Molecular
Wires. The Role of Heteroatom Linkers. J. Am. Chem. Soc. 2010, 132,
10374−10382. (b) Hu, B.; Debruler, C.; Rhodes, Z.; Liu, T. L. Long-
Cycling Aqueous Organic Redox Flow Battery (AORFB) toward
Sustainable and Safe Energy Storage. J. Am. Chem. Soc. 2017, 139,
1207−1214. (c) Ding, Y.; Zhao, Y.; Yu, G. A Membrane-Free
Ferrocene-Based High-Rate Semiliquid Battery. Nano Lett. 2015, 15,
4108−4113. (d) Zhao, Y.; Ding, Y.; Song, J.; Li, G.; Dong, G.;
Goodenough, J. B.; Yu, G. Sustainable Electrical Energy Storage
(8) Hazra, S.; Deb, M.; Elias, A. J. Iodine catalyzed oxidation of
alcohols and aldehydes to carboxylic acids in water: a metal-free route
to the synthesis of furandicarboxylic acid and terephthalic acid. Green
Chem. 2017, 19, 5548.
F
Organometallics XXXX, XXX, XXX−XXX