Communications
Table 4: Oxidation of secondary azides to ketones.
[1] a) The Chemistry of the Cyano Group (Eds: Z. Rappoport),
Interscience, New York, 1970; b) S. Arseniyadis, K. S. Kyler,
D. S. Watt in Organic Reactions, Vol. 31 (Eds.: W. G. Dauben),
Wiley, New York, 1984, pp. 1 – 374; c) A. J. Fatiadi in Preparation
and Synthetic Applications of Cyano Compounds (Eds.: S. Patai,
Z. Rappaport), Wiley, New York, 1983; d) R. C. Larock,
Comprehensive Organic Transformations, VCH, New York,
1989; e) A. Kleemann, J. Engel, B. Kutscher, D. Reichert,
Pharmaceutical Substance: Synthesis Patents, Applications, 4th
ed., Georg Thieme, Stuttgart, 2001; f) J. S. Miller, J. L. Manson,
Advanced Organic Chemistry: Reactions, Mechanisms, and
Structure, 6th ed., Wiley, Hoboken, NJ, 2007.
[2] a) F. Hagedorn, H. P. Gelbke in Ullmanns Enzyklopꢁdie der
Technischen Chemie, Vol. 17, 4th ed. (Eds.: E. Bartholomꢁ, E.
Biekert, H. Hellmann, H. Ley, W. M. Weigert, E. Weise), Verlag
Chemie, Weinheim, 1979, p. 333; b) G. P. Ellis, T. M. Romney-
Synthesis, Vol. 19, Georg Thieme, Stuttgart, 2004, p. 163.
[3] a) K. W. Rosenmund, E. Struck, Ber. Dtsch. Chem. Ges. 1919, 2,
K. Wallenfels, in The Chemistry of the Cyano Group (Ed.: Z.
Rappoport), Interscience, London, 1970, p. 67; d) J. Lindley,
Methoden der Organischen Chemie, 4th ed., Part III, Vol. 8
(Ed.: E. Mꢂller), Georg Thieme, Stuttgart, 1952, p. 302.
[4] a) M. Sundermeier, A. Zapf, M. Beller, Chem. Commun. 2004,
1388; b) D. Wang, L. Kuang, Z. Li, K. Ding, Synlett 2008, 69;
c) H.-J. Cristau, A. Ouali, J.-F. Spindler, M. Taillefer, Chem. Eur.
Entry
1
Substrate
t [h]
Product
Yield [%][a]
94
1p
1q
1r
1
2p
2q
2r
2
3
4
1
1
1
92
91
92
1s
2s
5
1t
24
2t
53[b]
[a] Yield of isolated product. [b] Reaction carried out at 08C, 1t was recovered
in 25%.
effect on the oxidation reaction of 1a and proceeded
smoothly to form 2a, thus indicating that the reaction did
not proceed through a radical intermediate.[23] A detailed
mechanistic study is currently underway within the group.
In summary, we have demonstrated that a variety of
primary azides are efficiently oxidized by TBHP and CuI
(5 mol%) into their corresponding nitriles in aqueous solu-
tion. This synthesis is suitable for a wide range of primary
benzylic azides that contain electron-donating and electron-
withdrawing functional groups. The oxidation is selective and
a number of oxidizable functional groups were well-tolerated
during the reaction conditions. Furthermore, oxidation of
secondary azides furnished the corresponding ketones in
excellent yields.
[5] a) T. Sandmeyer, Ber. Dtsch. Chem. Ges. 1885, 18, 1946; b) T.
Yamaguchi, H. Fujiwara, Y. Ogasawara, M. Kotani, N. Mizuno,
J. L. Zhu, J. D. Wu, C. M. Chu, C. F. Yao, K. S. Shia, Chem.
[9] K. Rajender Reddy, C. U. Maheswari, M. Venkateshwar, S.
[10] B. Lꢂcke, K. V. Narayana, A. Martin, K. Jꢃnisch, Adv. Synth.
[11] For other methods see: a) T. Oishi, K. Yamaguchi, N. Mizuno,
Experimental Section
Typical procedure for para-methoxybenzonitrile (2a): Aqueous
TBHP (70% solution in water, 0.344 mL, 2.5 mmol) was added to a
stirred suspension of 1-(azidomethyl)-4-methoxybenzene (1a,[16a]
163 mg, 1 mmol) and CuI (9.5 mg, 0.05 mmol) in water (2 mL). The
reaction mixture was heated at reflux until the reaction had gone to
completion (1 h, monitored by TLC), cooled to room temperature,
and extracted with ethyl acetate (3 ꢀ 15 mL); the combined organic
layer was washed with water (2 ꢀ 50 mL), dried over sodium sulfate,
and the solvent was removed under vacuum. The residue was purified
by column chromatography on silica gel (EtOAc/hexane 1:19 to 1:9)
to furnish 123 mg (92%) of 2a as a colorless solid; m.p.: 55–578C
(lit.[24] 56–57).
Received: May 2, 2010
Published online: August 2, 2010
[13] K. Banert, J. R. Fotsing, M. Hagedorn, H. P. Reisenauer, G.
Keywords: azides · copper · nitriles · oxidation ·
tert-butyl hydroperoxide
.
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2010, 49, 6622 –6625