Biochemistry
Article
(9) White, M. D., Payne, K. A. P., Fisher, K., Marshall, S. A., Parker, D.,
Rattray, N. J. W., Trivedi, D. K., Goodacre, R., Rigby, S. E. J., Scrutton, N.
S., Hay, S., and Leys, D. (2015) UbiX is a flavin prenyltransferase
required for bacterial ubiquinone biosynthesis. Nature 522, 502−506.
(10) Bentinger, M., Tekle, M., and Dallner, G. (2010) Coenzyme
Q - Biosynthesis and functions. Biochem. Biophys. Res. Commun. 396,74−79.
(11) Gulmezian, M., Hyman, K. R., Marbois, B. N., Clarke, C. F., and
Javor, G. T. (2007) The role of UbiX in Escherichia coli coenzyme Q
biosynthesis. Arch. Biochem. Biophys. 467, 144−153.
(12) Jacewicz, A., Izumi, A., Brunner, K., Schnell, R., and Schneider, G.
(2013) Structural Insights into the UbiD Protein Family from the
Crystal Structure of PA0254 from Pseudomonas aeruginosa. PLoS One
8, e63161.
(13) Meganathan, R. (2001) Ubiquinone biosynthesis in micro-
organisms. FEMS Microbiol. Lett. 203, 131−139.
(14) Rangarajan, E. S., Li, Y. G., Iannuzzi, P., Tocilj, A., Hung, L. W.,
Matte, A., and Cygler, M. (2004) Crystal structure of a dodecameric
FMN-dependent UbiX-like decarboxylase (Pad1) from Escherichia coli
O157: H7. Protein Sci. 13, 3006−3016.
(15) Gothelf, K. V., and Jorgensen, K. A. (1998) Asymmetric 1,3-
dipolar cycloaddition reactions. Chem. Rev. 98, 863−909.
(16) Pellissier, H. (2007) Asymmetric 1,3-dipolar cycloadditions.
Tetrahedron 63, 3235−3285.
(17) Waugh, M. W., and Marsh, E. N. G. (2014) Solvent Isotope
Effects on Alkane Formation by Cyanobacterial Aldehyde Deformylat-
ing Oxygenase and Their Mechanistic Implications. Biochemistry 53,
5537−5543.
(18) Pindur, U., and Schneider, H. G. (1994) Pericyclic Key Reactions
in Biological Systems. Chem. Soc. Rev. 23, 409−415.
(19) Miyamoto, K., and Ohta, H. (1992) Purification and Properties of
a Novel Arylmalonate Decarboxylase from Alcaligenes-bronchisepticus
KU-1201. Eur. J. Biochem. 210, 475−481.
(20) Kurti, L., and Czako, B. (2005) Strategic Applications of Named
Reactions in Organic Synthesis, Elsevier Academic Press.
In conclusion, the results presented here are consistent with
the proposed mechanism for FDC, which involves a novel cyclo-
addition reaction of the substrate with the prenylated flavin
cofactor. The results suggest that the rate-determining step in the
catalytic cycle is resolution of the product−prFMN adduct
through a cyclo-elimination reaction. Further mechanistic studies
will be necessary to better establish the timing of the decar-
boxylation and protonation events, for example, by the measure-
ment of heavy atom KIEs associated with decarboxylation. So far,
evidence for the cyclic adduct between the substrate and prFMN
remains indirect, and further experiments are needed to sub-
stantiate the formation of this key intermediate. Our results
suggest it may be possible to stabilize this adduct sufficiently
to permit its characterization by reaction of the enzyme with
highly electron-withdrawing substrates that slow the rate of cyclo-
elimination. The substrate reactivity patterns uncovered here
may also be useful in guiding efforts to engineer FDC toward
alternative substrates or greater catalytic efficiency.
AUTHOR INFORMATION
■
Corresponding Author
Funding
This research was supported in part by grants from the National
Science Foundation (CHE 1152055 and CBET 1336636) to
E.N.G.M.; N.A. acknowledges the support of a Royal Thai
Government Scholarship.
Notes
The authors declare no competing financial interest.
(21) Gadda, G., and Fitzpatrick, P. F. (2013) Solvent isotope and
viscosity efects on the steady state kinetics of the flavoprotein
nitroalkane oxidase. FEBS Lett. 587, 2785−2789.
(22) Jaffe, H. H. (1953) A Reexamination of the Hammett Equation.
Chem. Rev. 53, 191−261.
ABBREVIATIONS
■
FDC, ferulic acid decarboxylase; prFMN, prenylated flavin
mononucleotide; SIE, solvent isotope effect; KIE, kinetic isotope
effect
(23) Neims, A. H., Deluca, C. D., and Hellerman, L. (1966) Studies on
Crystaline D-Amino Acid Oxidase. III. Substrate Specificity and sigma-pi
Relationship. Biochemistry 5, 203−207.
REFERENCES
■
(1) Jordan, F., and Patel, H. (2013) Catalysis in Enzymatic
Decarboxylations: Comparison of Selected Cofactor-Dependent and
Cofactor-Independent Examples. ACS Catal. 3, 1601−1617.
(2) Kourist, R., Guterl, J.-K., Miyamoto, K., and Sieber, V. (2014)
Enzymatic Decarboxylation-An Emerging Reaction for Chemicals
Production from Renewable Resources. ChemCatChem 6, 689−701.
(3) Claypool, J. T., Raman, D. R., Jarboe, L. R., and Nielsen, D. R.
(2014) Technoeconomic evaluation of bio-based styrene production by
engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 41, 1211−1216.
(4) McKenna, R., Thompson, B., Pugh, S., and Nielsen, D. R. (2014)
Rational and combinatorial approaches to engineering styrene
production by Saccharomyces cerevisiae. Microb. Cell Fact. 13, 123.
(5) Huang, Z. X., Dostal, L., and Rosazza, J. P. N. (1994) Purification
and Characterization of a Ferulic Acid Decarboxylase from Pseudomo-
nas-Fluorescens. J. Bacteriol. 176, 5912−5918.
(6) Mukai, N., Masaki, K., Fujii, T., Kawamukai, M., and Iefuji, H.
(2010) PAD1 and FDC1 are essential for the decarboxylation of
phenylacrylic acids in Saccharomyces cerevisiae. J. Biosci. Bioengin. 109,
564−569.
(7) Lin, F., Ferguson, K. L., Boyer, D. R., Lin, X. N., and Marsh, E. N.G.
(2015) Isofunctional enzymes PAD1 and UbiX catalyze formation of a
novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-
polyprenylbenzoic acid decarboxylase. ACS Chem. Biol. 10, 1137−1144.
(8) Payne, K. A. P., White, M. D., Fisher, K., Khara, B., Bailey, S. S.,
Parker, D., Rattray, N. J. W., Trivedi, D. K., Goodacre, R., Beveridge, R.,
Barran, P., Rigby, S. E. J., Scrutton, N. S., Hay, S., and Leys, D. (2015)
New cofactor supports alpha,beta-unsaturated acid decarboxylation via
1,3-dipolar cyclo-addition. Nature 522, 497−501.
(24) Yorita, K., Misaki, H., Palfey, B. A., and Massey, V. (2000) On the
interpretation of quantitative structure-function activity relationship
data for lactate oxidase. Proc. Natl. Acad. Sci. U. S. A. 97, 2480−2485.
(25) Trahanovsky, W. S., Cramer, J., and Brixius, D. W. (1974)
Oxidation of Organic Compounds with Cerium(IV) 0.18. Oxidative
Decarboxylation of Substittued Phenylacetic Acids. J. Am. Chem. Soc. 96,
1077−1081.
(26) Cleland, W. W. (1987) Secondary isotope effects on enzymatic
reactions. In Isotopes in Organic Chemistry (Buncel, E., and Lee, C. C.,
Eds.) Elsevier, Amsterdam.
(27) Cleland, W. W. (2005) The use of isotope effects to determine
enzyme mechanisms. Arch. Biochem. Biophys. 433, 2−12.
(28) Kurtz, A. K., and Fitzpatrick, P. F. (1997) pH and Secondary
Kinetic Isotope Effects on the Reaction of D-Amino Acid Oxidase with
Nitroalkane Anions: Evidence for Direct Attack on the Flavin by
Carbanions. J. Am. Chem. Soc. 119, 1155−1156.
(29) Northrop, D. B. (1975) Steady-State Analysis of Kinetic Isotope
Effects in Enzyme Reactions. Biochemistry 14, 2644−2651.
(30) Wuensch, C., Pavkov-Keller, T., Steinkellner, G., Gross, J., Fuchs,
M., Hromic, A., Lyskowski, A., Fauland, K., Gruber, K., Glueck, S. M.,
and Faber, K. (2015) Regioselective Enzymatic beta-Carboxylation of
Hydroxy-styrene Derivatives Catalyzed by Phenolic Acid Decarbox-
ylase. Adv. Synth. Catal. 357, 1909−1918.
(31) Perez, P., Domingo, L. R., Aurell, M. J., and Contreras, R. (2003)
Quantitative Characterization of the global electrophilicty pattern of
some reagents involved in 1,3-dipolar cyclo-addition reaction.
Tetrahedron 59, 3117−3125.
G
Biochemistry XXXX, XXX, XXX−XXX