L. J. Castellanos-García et al.: Oligo p-Phenylenevinylene Derivatives
14. Díaz, C., Alzate, D., Rodríguez, R., Ochoa, C., Sierra, C.A.: High yield
with LDI measurements. Working laser energy for PVs lies in
and stereospecific synthesis of segmented poly (p-phenylenevinylene) by
the Heck Reaction.pdf. Synth. Met. 172, 32–36 (2013)
the 0.4–1.0 μJ range, much lower than the laser energy used for
traditional matrices like CHCA, DCTB, and DHB, usually
above 1.3 μJ. Lower laser energies in MALDI translate into
increased laser lifetime and decreased source contamination. In
addition, we observed limits of detection in the low fmol range
for PV-CN, whereas LDI provides LODs in the pmol to higher
fmol range. The observation of low LODs when using the PV
matrices supports the idea of ionization through electron trans-
fer from the analyte to the matrix, rather than from direct
photoionization. Finally, among the tested PV matrices, PV-
CN stands out as ET MALDI matrix because of its high
analytical performance.
15. Alzate, D., Hinestroza, J.P., Sierra, C.A.: High-yield synthesis of the
novel E,E-2,5-dimethoxy-1,4-bis[2-(4-ethylcarboxylatestyril)]benzene
by the Heck Reaction. Synth. Commun. 43, 2280–2285 (2013)
16. Amrutha, S.R., Jayakannan, M.: Probing the pi-stacking induced molec-
ular aggregation in pi-conjugated polymers, oligomers, and their blends of
p-phenylenevinylenes. J. Phys. Chem. B. 112, 1119–1129 (2008)
17. Schenning, A.P.H.J., van Herrikhuyzen, J., Jonkheijm, P., Chen, Z.,
Würthner, F., Meijer, E.W.: Photoinduced electron transfer in
hydrogen-bonded oligo(p-phenylene vinylene)-perylene bisimide chiral
assemblies. J. Am. Chem. Soc. 124, 10252–10253 (2002)
18. Sierra, C., Lahti, P.: A simple multichromophore design for energy
transfer in distyrylbenzenes with pyrene pendants. J. Phys. Chem. A.
110, 12081–12088 (2006)
19. Sierra, C.A., Lahti, P.M.: A photoluminescent, segmented oligo-
polyphenylenevinylene copolymer with hydrogen-bonding pendant
chains. Chem. Mater. 16, 55–61 (2004)
20. Praveen, V.K., Ranjith, C., Bandini, E., Ajayaghosh, A., Armaroli, N.:
Oligo(phenylenevinylene) hybrids and self-assemblies: versatile mate-
rials for excitation energy transfer. Chem. Soc. Rev. 43, 4222–4242
(2014)
21. Samori, S., Hara, M., Tojo, S., Fujitsuka, M., Majima, T.: Important
factors for the formation of radical cation of stilbene and substituted
stilbenes during resonant two-photon ionization with a 266- or 355-nm
laser. J. Photochem. Photobiol. A – Chem. 179, 115–124 (2006)
22. Grozema, F.C., Candeias, L.P., Swart, M., van Duijnen, P.T., Wildeman,
J., Hadziioanou, G., Siebbeles, L.D.A., Warman, J.M.: Theoretical and
experimental studies of the opto-electronic properties of positively
charged oligo(phenylene vinylene)s: effects of chain length and alkoxy
substitution. J. Chem. Phys. 117, 11366–11378 (2002)
Acknowledgments
The authors acknowledge funding from COLCIENCIAS (Grant
0041-2013). They also thank Guatiguará Technology Park and
the Central Research Laboratory Facility at Universidad Indus-
trial de Santander for infrastructural support. L.J.C. acknowl-
edges the Vice Chancellor for Research Office at Universidad
Industrial de Santander (VIE-UIS) for a travel grant.
23. Srinivasan, N., Haney, C.A., Lindsey, J.S., Zhang, W., Chait, B.T.:
Investigation of MALDI-TOF mass spectrometry of diverse synthetic
metalloporphyrins, phthalocyanines, and multiporphyrin arrays. J. Por-
phyrins Phthalocyanines. 3, 283–291 (1999)
References
1. Wyatt, M.F.: MALDI-TOFMS analysis of coordination and organome-
tallic complexes: a nic(h)e area to work in. J. Mass Spectrom. 46, 712–
719 (2011)
2. Knochenmuss, R.: Ion formation mechanisms in UV-MALDI. Analyst.
131, 966–986 (2006)
24. Streletskiy, A.V., Goldt, I.V., Kuvychko, I.V., Ioffe, I.N., Sidorov, L.N.,
Drewello, T., Strauss, S.H., Boltalina, O.V.: Application of 9-
nitroanthracene as a matrix for laser desorption/ionization analysis of
fluorinated fullerenes. Rapid Commun. Mass Spectrom. 18, 360–362
(2004)
25. Ulmer, L., Mattay, J., Torres-garcia, H.G., Luftmann, H.: Letter: the use
of 2- [(2E) -3- (4-tert-butylphenyl) -2- methylprop-2-enylidene]
malononitrile as a matrix for matrix-assisted laser desorption/ionization
mass spectrometry. Eur. J. Mass Spectrom. 52, 49–52 (2000)
26. Winter, J., De Gaelle, D., Boon, F., Coulembier, O., Dubois, P., Gerbaux,
P.: MALDI-TOF analysis of polythiophene: use of trans-2-[3-(4-t-butyl-
phenyl)-2-methyl-2-propenylidene]malononitrile – DCTB – as matrix. J.
Mass Spectrom. 46, 237–246 (2011)
27. Kumar, M.R., Raju, N.P., Reddy, T.J., Narahari, A., Reddy, M.J.R.,
Vairamani, M.: Evaluation of methyl 3-(4-methoxy-1-naphthyl)-(E)-2-
propenoate and methyl 5-(4-methoxy-1-naphthyl)-(2E,4E)-2,4-
pentadienoate as new charge-transfer matrices for matrix-assisted laser
desorption/ionization mass spectrometry. Rapid Commun. mass
Spectrom. 19, 3171–3174 (2005)
28. Wyatt, M.F., Stein, B.K., Brenton, A.G.: Characterization of various
analytes using matrix-assisted laser desorption / ionization time-of-flight
mass spectrometry and 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-
enylidene] malononitrile matrix. Anal. Chem. 78, 199–206 (2006)
29. Lou, X., de Waal, B.F.M., van Dongen, J.L.J., Vekemans, J.A.J.M.,
Meijer, E.W.: A pitfall of using 2-[(2E)-3-(4-tert-butylphenyl)-2-
methylprop-2-enylidene]malononitrile as a matrix in MALDI TOF MS:
chemical adduction of matrix to analyte amino groups. J. Mass Spectrom.
45, 1195–1202 (2010)
30. Boutaghou, M.N., Cole, R.B.: 9,10-Diphenylanthracene as a matrix for
MALDI-MS electron transfer secondary reactions. J. Mass Spectrom. 47,
995–1003 (2012)
31. Kim, S.O., Jung, H.C., Lee, M.-J., Jun, C., Kim, Y.-H., Kwon, S.-K.:
Synthesis and characterization of 9,10-diphenylanthracene-based
blue light emitting materials. J. Polym. Sci., Part A Polym. Chem.
47, 5908–5916 (2009)
32. Coon, J.J., Syka, J.E.P., Schwartz, J.C., Shabanowitz, J., Hunt, D.F.:
Anion dependence in the partitioning between proton and electron trans-
fer in ion/ion reactions. Int. J. Mass Spectrom. 236, 33–42 (2004)
3. Streletskii, A.V., Ioffe, I.N., Kotsiris, S.G., Barrow, M.P., Drewello, T.,
Strauss, S.H., Boltalina, O.V.: In-plume thermodynamics of the MALDI
generation of fluorofullerene anions. J. Phys. Chem. A. 109, 714–719
(2005)
4. Suzuki, T., Midonoya, H., Shioi, Y.: Analysis of chlorophylls and their
derivatives by matrix-assisted laser desorption/ionization-time-of-flight
mass spectrometry. Anal. Biochem. 390, 57–62 (2009)
5. Brown, T., Clipston, N.L., Simjee, N., Luftmann, H., Hungerbühler, H.,
Drewello, T.: Matrix-assisted laser desorption/ionization of amphiphilic
fullerene derivatives. Int. J. Mass Spectrom. 210/211, 249–263 (2001)
6. Skelton, R., Dubois, F., Zenobi, R.: A MALDI sample preparation
method suitable for insoluble polymers. Anal. Chem. 72, 1707–1710
(2000)
7. McCarley, T.D., McCarley, R.L., Limbach, P.A.: Electron-transfer ioni-
zation in matrix-assisted laser desorption/ionization mass spectrometry.
Anal. Chem. 70, 4376–4379 (1998)
8. Friend, R.H.: Conjugated polymers. New materials for optoelectronic
devices. Pure Appl. Chem. 73, 425–430 (2001)
9. McNeill, C.R., Greenham, N.C.: Conjugated-polymer blends for opto-
electronics. Adv. Mater. 21, 3840–3850 (2009)
10. AlSalhi, M.S., Alam, J., Dass, L.A., Raja, M.: Recent advances in
conjugated polymers for light emitting devices. Int. J. Mol. Sci. 12,
2036–2054 (2011)
11. Chen, S., Jen, T., Lu, H.: A review on the emitting species in conjugated
polymers for photo- and electro-luminescence. J. Chinese Chem. Soc. 57,
439–458 (2010)
12. Luo, F.-T., Tao, Y.-T., Ko, S.-L., Chuen, C.-H., Chen, H.: Efficient
electroluminescent material for light-emitting diodes from 1,4-
distyrylbenzene derivatives. J. Mater. Chem. 12, 47–52 (2002)
13. Cornil, J., dos Santos, D., Beljonne, D., Brédas, J.: Electronic structure of
phenylene vinylene oligomers: influence of donor/acceptor substitutions.
J. Phys. Chem. 99, 5604–5611 (1995)