Inorganic Chemistry
Communication
Darcel, C. Adv. Synth. Catal. 2011, 353, 239. (l) Bhattacharya, P.;
Krause, J. A.; Guan, H. Organometallics 2011, 30, 4720.
(10) (a) Fontaine, F.-G.; Nguyen, R.-V.; Zargarian, D. Can. J. Chem.
2003, 81, 1299. (b) Chakraborty, S.; Krause, J. A.; Guan, H.
Organometallics 2009, 28, 582. (c) Tran, B. L.; Pink, M.; Mindiola,
D. J. Organometallics 2009, 28, 2234.
(11) In the classical Ojima mechanism, carbonyl adds to a silyl
hydride complex, followed by migration of either silyl or hydride
ligands and elimination of Si−O (or C−H) bonds: Ojima, I.; Kogure,
T.; Kumagai, M.; Horiuchi, S.; Sato, T. J. Organomet. Chem. 1976, 122,
83.
rare example of reversible C−H activation in the alkoxy
intermediate.
ASSOCIATED CONTENT
■
S
* Supporting Information
X-ray crystallographic data in CIF format and experimental and
computational details. This material is available free of charge
AUTHOR INFORMATION
■
(12) (a) Nugent, W. A.; Mayer, J. M. Metal−ligand multiple bonds;
Wiley: New York, 1988. (b) Wigley, D. E. Prog. Inorg. Chem. 1994, 42,
239.
Corresponding Author
(13) (a) Dioumaev, V. K.; Procopio, L. J.; Carroll, P. J.; Berry, D. H.
J. Am. Chem. Soc. 2003, 125, 8043. (b) Sola, E.; Garcıa-
́
Camprubí, A.;
ACKNOWLEDGMENTS
■
Andres, J. L.; Martín, M.; Plou, P. J. Am. Chem. Soc. 2010, 132, 9111.
́
This work was supported by the Petroleum Research Fund,
administered by the American Chemical Society (grant to
G.I.N.), and by an OGS fellowship to A.Y.K. S.K.I. thanks the
RFBR (Russia), and L.G.K. and J.A.K.H. thank the Royal
Society of London.
(14) For example, hydrosilylation of PhC(O)H catalyzed by 1
requires 3 h at 50 °C (ref 6a) versus 15 min at room temperature in
the 3-catalyzed reaction.
(15) The hydride was located from Fourier difference synthesis and
refined isotropically. Final R1 = 0.0320.
(16) The open N−Mo−Si bond angle of 108.24(5)° and the large
N/Si separation (3.515 Å) rule out any Si−N interaction as a driving
force for this unusual geometry. Similarly, the large silicon···hydride
separation of 2.328 Å is not consistent with any Si−H interaction.
(17) A labeling experiment with D3SiPh, however, proves the
occurrence of a slow Mo−H/PhSiD2-D exchange.
REFERENCES
■
(1) (a) Furstner, A.; Majima, K.; Martín, R.; Krause, H.; Kattnig, E.;
̈
Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 1992.
(b) Bullock, R. M. Angew. Chem., Int. Ed. 2007, 46, 7360. (c) Bullock,
R. M. Chem.Eur. J. 2004, 10, 2366.
(18) ΔS⧧ = 14.6 5.2 cal K−1 mol−1, ΔH⧧ = 23.0 1.7 kcal
intra
= 18.7 3.2 kcal mol−1in.tra
(2) (a) Riant, O.; Mostefai, N.; Courmarcel, J. Synthesis 2004, 18,
2943. (b) Carpentier, J.-F.; Bette, V. Curr. Org. Chem. 2002, 6, 913.
(c) Du, G. D.; Abu-Omar, M. M. Curr. Org. Chem. 2008, 12, 1185.
(d) Marciniec, B. Hydrosilylation, Advances in Silicon Science; Springer
Science + Business Media BV: New York, 2009.
mol−1, and ΔG⧧
295.1,intra
= 30.9
(19) ΔS⧧
10.6 cal K−1 mol−1, ΔH⧧
= 30.3
inter
3.4
inter
kcal·mol−1, and ΔG⧧
= 21.2 6.5 kcal mol−1
295.1,inter
(20) The positive entropy of activation is not consistent with the
conventional twist mechanism: (a) Bailar, J. C. Jr. J. Inorg. Nucl. Chem.
1958, 8, 165. (b) Bickley, D. G.; Serpone, N. Inorg. Chem. 1976, 15,
2577. (c) For fluxional octahedral complexes with negative entropies
of activations, see: Ismail, A. A.; Sauriol, F.; Butler, I. S. Inorg. Chem.
1989, 28, 1007.
(3) (a) Berc, S. C.; Kreutzer, K. A.; Buchwald, S. L. J. Am. Chem. Soc.
1991, 113, 5093. (b) Berc, S. C.; Buchwald, S. L. J. Org. Chem. 1992,
57, 3751. (c) Broene, R. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993,
́
115, 12569. (d) Carter, M. B.; Schiøtt, B.; Gutierrez, A.; Buchwald,
S. L. J. Am. Chem. Soc. 1994, 116, 11667. (e) Halterman, R. L.; Ramsey,
T. M.; Chen, Z. J. Org. Chem. 1994, 59, 2642. (f) Harrod, J. F.; Xin, S.
Can. J. Chem. 1995, 73, 999. (g) Yun, J.; Buchwald, S. L. J. Am. Chem.
Soc. 1999, 121, 5640.
(21) For selected examples of fluxional octahedral nonhydride
complexes, see ref 20c and references cited therein.
(22) Activation parameters were calculated using 1D 1H EXSY NMR
with the initial rate analysis: Naumann, C.; Patrick, B. O.; Sherman,
J. C. Tetrahedron 2002, 58, 787.
(4) Yun, S. S.; Yong, S. Y.; Lee, S. Bull. Korean Chem. Soc. 1997, 18,
1058.
(5) (a) Reis, P. M.; Romao, C. C.; Royo, B. Dalton Trans. 2006,
1842. (b) Costa, P. J.; Romao, C. C.; Fernandens, A. C.; Royo, B.;
(23) ΔS⧧inter = 11.7 12.4 cal K−1 mol−1, ΔH⧧inter = 23.9 4.0 kcal
̃
mol−1, and ΔG⧧
= 20.5 7.7 kcal mol−1
(24) Shriver@Atkin’s Inorganic Chemistry; 4th ed.; W. H. Freeman:
New York, 2006.
295.1,inter
̃
Reis, P.; Calhorda, M. J. Chem.Eur. J. 2007, 13, 3934.
(6) (a) Peterson, E.; Khalimon, A. Y.; Simionescu, R.; Kuzmina, L.
G.; Howard, J. A. K.; Nikonov, G. I. J. Am. Chem. Soc. 2009, 131, 908.
(b) Shirobokov, O. G.; Simionescu, R.; Kuzmina, L. G.; Nikonov, G. I.
Chem. Commun. 2010, 6, 7831. (c) Shirobokov, O. G.; Kuzmina, L. G.;
Nikonov, G. I. J. Am. Chem. Soc. 2011, 133.
(25) See the Supporting Information for details.
(26) Other molybdenum(VI) silyl hydride complexes have been
recently described; see ref 6b.
(27) Attempts to shift the equilibrium via the addition of excess
acetone led to a further reaction that will be discussed in the
subsequent full paper.
(28) For example, see: (a) Hoffman, D. M.; Lappas, D.; Wierda,
D. A. J. Am. Chem. Soc. 1989, 111, 1531. (b) Parkin, G.; Bunel, E.;
Burger, B. J.; Trimmer, M. S.; van Asselt, A.; Bercaw, J. E. J. Mol. Catal.
1987, 41, 21. (c) Tatsumi, T.; Shibagaki, M.; Tominaga, H. J. Mol.
Catal. A 1984, 24, 19. (d) Nugent, W. A.; Zubyk, R. M. Inorg. Chem.
1986, 25, 4604.
(7) Dioumaev, V. K.; Bullock, R. M. Nature 2003, 424, 530.
(8) (a) Nolin, K. A.; Krumper, J. R.; Pluth, M. D.; Bergman, R. G.;
Toste, F. D. J. Am. Chem. Soc. 2007, 129, 14684. (b) Du, G. D.;
Fanwick, P. E.; Abu-Omar, M. M. J. Am. Chem. Soc. 2007, 129, 5180.
(c) Royo, B.; Romao, C. C. J. Mol. Catal. A: Chem. 2005, 236, 107.
̃
(9) (a) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004,
126, 13794. (b) Gutsulyak, D. V.; Kuzmina, L. G.; Howard, J. A. K.;
Vyboishchikov, S. F.; Nikonov, G. I. J. Am. Chem. Soc. 2008, 130, 3732.
(c) Shaikh, N. S.; Junge, K.; Beller, M. Org. Lett. 2007, 9, 5429.
(d) Nishiyama, H.; Furuta, A. Chem. Commun. 2007, 760.
(e) Tondreau, A. M.; Lobkovsky, E.; Chirik, P. J. Org. Lett. 2008,
10, 2789. (f) Shaikh, N. S.; Enthaler, S.; Junge, K.; Beller, M. Angew.
Chem., Int. Ed. 2008, 5, 5429. (g) Langlotz, B. K.; Wadepohl, H.; Gade,
L. H. Angew. Chem., Int. Ed. 2008, 47, 4670. (h) Addis, D.; Shaikh, N.;
Zhou, S.; Das, S.; Junge, K.; Beller, M. Chem. Asian J. 2010, 5, 1687.
(i) Kandepi, V. V. K. M.; Cardoso, J. M. S.; Peris, E.; Royo, B.
(29) (a) Guedes da Silva, M. F. C.; Frausto da Silva, J. J. R.;
Pombeiro, A. J. L. Inorg. Chem. 2002, 41, 219. (b) Bercaw, J. E.;
Davies, D. L.; Wolczanski, P. T. Organometallics 1986, 5, 443.
(c) Erker, G.; Fromberg, W.; Atwood, J. L.; Hunter, W. E. Angew.
̈
Chem. 1984, 96, 72.
Organometallics 2010, 29, 2777. (j) Junge, K.; Schroder, K.; Beller, M.
̈
́
Chem. Commun. 2011, 47, 4849. (k) Jiang, F.; Bezier, D.; Sortais, J.-B.;
756
dx.doi.org/10.1021/ic201550a | Inorg. Chem. 2012, 51, 754−756