Macromolecules, Vol. 36, No. 12, 2003
Palladium Nanoparticles 4301
Ta ble 8. Hyd r ogen a tion of Va r iou s Un sa tu r a ted Su bstr a tes w ith P d /p P DT5a
0
entry
T (°C); time (h)
solvent
substrate
substrate/M
TOF,b,c productd
1
2
3
4
5
6
7
8
9
1
1
1
1
100; 1
100; 1
100; 1
100; 1
100; 1
100; 1
80; 1
n-pentane
MeOH
n-pentane
MeOH
n-pentane
MeOH
n-pentane
MeOH
n-pentane
n-pentane
n-pentane
MeOH
benzene
benzene
866
866
165
165
165
165
165
165
165
303, CY
0
143, BA
165, BA
145, EB; 20, EC
165, EB
benzylideneacetone
benzylideneacetone
phenylacetylene
phenylacetylene
phenylacetylene
phenylacetylene
diphenylacetylene
diphenylacetylene
quinoline
75, EB; 8, EC
110, ST; 55, EB
140, DPE
27, DPE
0
80; 1
100; 1
100; 6
130; 1
130; 1
130; 8
0
1
2
3
165
1650
1650
1650
1
quinoline
1,2,3,4-tetrahydroquinoline
348, THQ
MeOH
0
a
0
b
Experimental conditions: P d /p P DT5, 2.02 wt % Pd; 30 bar H2; 30 mL of solvent; 1500 rpm. Average values over at least three
runs. c Mole product: (mol Pd)
DPE ) 1,2-diphenylacetylene, and THQ ) 1,2,3,4-tetrahydroquinoline.
-1
h
-1 d
.
CY ) cyclohexane, BA ) benzylacetone, ST ) styrene, EB ) ethylbenzene, EC ) ethylcyclohexane,
1
Refer en ces a n d Notes
to 1,2-diphenylethane (entry 9), which seems to reflect
steric effects. Indeed, the selective and quantitative
formation of 1,2-diphenylethane was observed also by
increasing the reaction time to 6 h (entry 10).
(1) Akaburi, S.; Sakurai, S.; Izumi, Y.; Fugi, Y. Nature (London)
1956, 178, 323.
(
2) Gates, B. C. Chemistry and Chemical Engineering of Catalitic
Processes; Prins, R., Schuit, C. G. A., Eds.; Sijthoff-Nordhoff:
Alphen aan den Rijn, The Netherlands, 1980; p 437.
3) Teichner, S. J .; Hoang-Van, C.; Astier, M. Metal-Support and
Metal-Addictive Effect in Catalysis; Elsevier Scientific Pub-
lishing Company: Amsterdam, 1982; p 121.
Studies are currently under way in our laboratories
with the aim of elucidating the role played by the
solvent/substrate ensemble in controlling the catalytic
activity and selectivity of the hydrogenation reactions
(
0
(4) Galvagno, S.; Donato, A.; Neri, G.; Pietropaolo, D.; Staiti, P.
assisted by P d /p P DT materials as well as other HB
React. Kinet. Catal. Lett. 1988, 37, 443.
aramid-supported metal phases.
(
(
(
(
5) Capannelli, G.; Cum, G.; Gallo, R.; Spadaro, A. J . Mol. Catal.
990, 59, 39.
6) Patel, D. R.; Dalal, M. K.; Ram, R. N. J . Mol. Catal. A: Chem.
996, 109, 141.
7) J o, Y.; Park, K.; Ahn, J .; Ihm, S. React. Funct. Polym. 1996,
9, 91.
8) Corain, B.; Kralik, M. J . Mol. Catal. A: Chem 2001, 173, 99.
1
Con clu sion s
1
For the first time hyperbranched polyamides with
terminal amino and carboxy functional groups have
been used as support materials for metal nanoparticles.
The preparation of these innovative materials involves
anchoring of PdCl2 to the support prior to reduction with
NaBH4 in water. Although XPS and IR results are
2
(9) Izumi, Y. Bull. Chem. Soc. J pn. 1959, 32, 936.
(10) Gr o¨ hn, F.; Kim, G.; Bauer, B. J .; Amis, E. J . Macromolecules
2
001, 34, 2179.
11) Russo, S.; Boulares, A.; Mariani, A. Macromol. Symp. 1998,
28, 13.
(
1
preliminary, these techniques allowed us to assess the
most appropriate class of polymers to be used as catalyst
support. XPS spectroscopy (together with IR) has shown
that the interaction between the polymer matrices and
the PdCl2 precursor involves exclusively the NH2 groups.
Therefore, pPDT polymers turned out to be good can-
didates for catalytic supports. Furthermore, by means
of XPS analysis, it was possible to determine the
oxidation state of the anchored metal. TEM spectroscopy
has revealed that the cluster dimensions and the metal
dispersion are greatly influenced the nature of the
polymeric support. In particular, the number of amino
groups has been found to control the size of the Pd
clusters as well as the metal loading.
The aramid-supported palladium materials proved to
be effective and robust catalysts for the selective hy-
drogenation of various unsaturated substrates, span-
ning from arenes, to R,â-unsaturated ketones, to alkynes,
to aromatic heterocycles. Notably, it was observed that
the polarity of the solvent (either MeOH or n-pentane)
can control either the activity or the selectivity of the
hydrogenation reactions.
(
12) Monticelli, O.; Mendichi, R.; Bisbano, S.; Mariani, A.; Russo,
S. Macromol. Chem. Phys. 2000, 201, 2123.
(13) Monticelli, O.; Mariani, A.; Voit, B.; Komber, H.; Mendichi,
R.; Pitto, V.; Tabuani, D.; Russo, S. High Perform. Polym.
2
001, 13, S45.
(14) Komber, H.; Voit, B.; Monticelli, O.; Russo, S. Macromolecules
2001, 34, 5487.
(15) Organikum: organisch-chemisches Grundpraktikum, 20th
revised and enlarged ed.; Schwetlick, K., et al., Eds.; Wiley-
VCH: Weinheim, Germany, 1999; p 451.
(16) Drelinkiewicz, A.; Hasik, M. J . Mol. Catal. A: Chem. 2001,
1
77, 149.
(17) Mathew, J . P.; Srinivasan, M. Eur. Polym. J . 1995, 31, 835.
(18) Michalska, Z. M.; Ostaszewski, B.; Zientarska, J .; Sobczak,
J . W. J . Mol. Catal. A: Chem. 1998, 129, 207.
(
(
(
19) Michalska, Z. M.; Strzelec, K.; Sobczak, J . W. J . Mol. Catal.
A: Chem. 2000, 156, 91.
20) J o, Y.; Park, K.; Ahn, J .; Ihm, S. React. Funct. Polym. 1996,
29, 91.
21) Simonov, P. A.; Moroz, E. M.; Chuvilin, A. L.; Kolomiichuk,
V. N.; Boronin, A. I.; Likholobov, V. A. Preparation of
Catalysts VI; Poncelet, G., Martens, J ., Delmon, B., J acobs,
P. A., Grange, P., Eds.; Elsevier Publishing Company: Am-
sterdam, 1995; p 977.
(22) Gonzales-Velasco, J . R.; Gutierrez-Ortiz, J . I.; Gutierrez-Ortiz,
M. A.; Martin, M. A.; Mendioroz, S.; Pajares, J . A.; Folgado,
M. A. Preparation of Catalysts IV; Poncelet, G., Delmon, B.,
J acobs, P. A., Grange, P., Eds.; Elsevier Publishing Com-
pany: Amsterdam, 1987; p 619.
Ack n ow led gm en t. C.B. thanks the CNR for financ-
ing a CNR-FONACIT (Venezuela) scientific agreement
and the EC for Contract 2002-00196.
(23) Akamatsu, K.; Deki, S. NanoStructured Mater. 1997, 8, 1121.
MA034245I