PLATINUM AND PALLADIUM NANOPARTICLES
119
the same time, a lower Pt content; platinum occurs
6. Y. J. Jiang and Q. M. Gao, J. Am. Chem. Soc. 128, 716
2006).
7. S. DomínguezꢀDomínguez, Á. BerenguerꢀMurcia,
B. K. Pradhan, et al., J. Phys. Chem. C 112, 3827
(2008).
0
(
both in the form of Pt , the proportion of which is
2
+
1
.5 times that in catalyst 4, and in the forms of Pt
4+
and Pt . Apparently, in the case of sulfonated Pt catꢀ
0
alysts, a special synergetic effect occurs between Pt ,
4+
–
3
Pt , and SO groups; it is responsible for activity and
8. L. Nikoshvili, E. Shimanskaya, A. Bykov, I. Yuranov,
L. KiwiꢀMinsker, E. Sulman,, Catal. Today 241
selectivity. It should be noted that the average particle
size did not have a significant effect on the activity and
selectivity of both the Pt and Pd catalysts in the pheꢀ
nylacetylene hydrogenation.
Naphthalene hydrogenation. It was of interest to use
the prepared nanocomposites as precursors of cataꢀ
lysts for the hydrogenation and hydrocracking of aroꢀ
(Part B), 179 (2015).
9
. E. A. Karakhanov, A. L. Maksimov, I. A. Aksenov, et al.,
Russ. Chem. Bull. 63, 1710 (2014).
1
1
1
1
0. R. Xing, Y. M. Liu, H. H. Wu, et al., Chem. Commun.,
297 (2008).
1. C. Yao, H. Li, H. Wu, et al., Catal. Commun. 10, 1099
2009).
6
(
matic hydrocarbons. Under severe conditions (400
°С,
2. R. Xing, H. Wu, L. Chen, and P. Wu, Adv. Funct.
5.0 MPa Н2), the prepared materials can provide the
Mater, 17, 2455 (2007).
3. G. Ertl, H. Knözinger, and J. Weitkamp, Handbook of
Heterogeneous Catalysis (WileyꢀVCH, Weinheim,
formation of metal nanoparticles in a hydrocarbon
medium owing to the hydrocracking of the polymer
support. Naphthalene was selected as a substrate. The
hydrogenation products were tetralin and cisꢀ and
transꢀdecalins.
It is evident that the highest activity was exhibited
by the palladium catalyst based on a dendrimerꢀmodꢀ
ified support: apparently, the presence of sulfo groups
leads to a considerable decrease in the degree of
hydrocracking of the substrate under the reaction conꢀ
ditions; for this reason, the formation of nanoparticles
in the suspension is significantly slowed down.
Thus, mesoporous polymeric supports modified
with sulfo groups and PPI dendrimers have been synꢀ
thesized. The Pd and Pt catalysts prepared on the basis
of these supports have been tested in the hydrogenaꢀ
tion of phenylacetylene and naphthalene. It has been
shown that the sulfonated Pd catalysts are most active
in the phenylacetylene hydrogenation, whereas the Pt
1997).
1
4. M. GarcíaꢀMota, J. GómezꢀDíaz, G. NovellꢀLeruth,
et al., Theor. Chem. Acc. 128, 663 (2011).
1
1
1
5. T. Mallat and A. Baiker, Appl. Catal., A 200, 3 (2000).
6. H. Lindlar and R. Dubuis, Org. Synth. 46, 89 (1966),
7. E. Karakhanov, A. Maximov, Y. Kardasheva, et al., ACS
Appl. Mater. Int. 6, 8807 (2014).
1
8. R. M. Crooks, M. Zhao, L. Sun, et al., Acc. Chem.
Res. 34, 181 (2001).
1
2
9. Y. Niu and R. M. Crooks, Chimie
0. A. Maximov, A. Zolotukhina, V. Murzin, et al., Chem.
Cat. Chem. , 1197 (2015).
1. M. Nabid, Ya. Bide, and S. J. Tabatabaei, Appl. Catal.,
406, 124 (2011).
2. G. Krishnan and K. Sreekumar, Soft Mater.
2010).
6, 1049 (2003).
7
2
2
A
8, 114
(
catalysts, conversely, exhibit an anomalously low 23. E. Murugan and R. Rangasamy, J. Polym. Sci., Part A:
Polym. Chem. 48, 2525 (2010).
activity. The dendrimerꢀcontaining catalyst exhibits a
relatively low activity; however, it preserves a high styꢀ 24. S. Ogasawara and S. Kato, J. Am. Chem. Soc. 132
,
4608 (2010).
rene selectivity even with a significant increase in the
reaction time. The highest activity in the naphthalene 25. Y. Jiang and Q. Gao, J. Am. Chem. Soc. 128, 716
(
2006).
26. Y. M. Chung and H. K. Rhee, Korean J. Chem. Eng.
, 81 (2004).
hydrogenation has been found for the Pd catalyst
modified with thirdꢀgeneration PPI dendrimers.
21
2
7. E. A. Karakhanov, A. L. Maksimov, E. M. Zakharian,
ACKNOWLEDGMENTS
et al., J. Mol. Catal. A: Chem. 397, 1 (2015).
This work was supported by the Russian Science 28. T. Seki, J.ꢀD. Grunwaldt, N. van Vegten, and A. Baiker,
Adv. Synth. Catal. 350, 691 (2008).
9. E. M. M. Berg and E. W. Meijer, Angew. Chem., Int.
Foundation, project no. 15ꢀ19ꢀ00099.
2
Ed. Engl. 32, 1308 (1993).
0. Handbuch der praüporativen anorganischen Chemie, Ed.
REFERENCES
3
1
2
3
4
5
. S. N. Khadzhiev, A. Yu. Krylova, M. V. Kulikova, et al.,
Pet. Chem. 53, 152 (2013).
. A. B. Kulikov, A. A. Pugacheva, and A. L. Maksimov,
Pet. Chem. 54, 426 (2014).
. I. Muylaert, A. Verberckmoes, J. de Decker, and P. van
der Voort, Adv. Colloid Interface Sci. 175, 39 (2012).
by G. Brauer, (Ferdinand Enke, Stuttgart, 1975
31. Y. Meng, D. Gu, F. Q. Zhang, et al., Chem. Mater. 18
4447 (2006).
32. I. Muylaert, A. Verberckmoes, J. Spileers, et al., Mater.
Chem. Phys. 138, 131 (2013).
33. Á. Mastalir, Z. Király, J. Catal. 2003. V. 220. P. 372.
−1981).
,
. A. Papp, Á. Molnár, and Á. Mastalir, Appl. Catal., A 34. D. Zhao, J. Feng, Q. Huo, et al., Science 279, 548
89, 256 (2005).
(1998).
. Á. Mastalir, B. Rác, Z. Király, and Á. Molnár, J. Mol. 35. Z. R. Yue, W. Jiang, L. Wang, et al., Carbon 37, 1785
2
Catal. A: Chem. 264, 170 (2007).
(1999).
PETROLEUM CHEMISTRY Vol. 56
No. 2
2016