Organometallics
Article
1
to air. The distillate was analyzed using H NMR and GC-MS, using
,3,5-TMB as an internal standard. Total alkene content in the
Energy (DE-FG02-05ER15687) for financial support of this
research. The authors acknowledge the Minnesota Super-
computing Institute (MSI) at the University of Minnesota for
providing resources that contributed to the research results
reported within this paper.
1
distillate was estimated by using integrations of the alkene protons
from the terminal and internal octene isomers vs 1,3,5-TMB. α-
Selectivity was determined by comparing the ratio of terminal protons
to internal protons. GC-MS analysis corroborated NMR analysis.
3
1
Computational Methods. All DFT calculations were performed
32
33,34
with Gaussian 09 using the M06-L functional.
was motivated by a survey of a variety of functionals compared to
Choice of M06-L
REFERENCES
■
35
(1) (a) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411−
502. (b) Dapsens, P. Y.; Mondelli, C.; Per
012, 2, 1487−1499. (c) Ragauskas, A. J.; Williams, C. K.; Davison, B.
LPNO-CCSD benchmark energies for dehydrative decarbonylation
of hydrocinnamic acid in the system studied here but with Pd in place
of Ni for the otherwise identical catalyst; M06-L was found to be
optimal for that case. Geometry optimizations for all minima and
transition-state structures were carried out in the gas phase with the
grid = ultrafine option for integral evaluations. Automatically
generated density fitting permits cost-efficient computations by
speeding up the evaluation of Coulomb integrals. The 6-31G(d,p)
2
́
ez-Ramírez, J. ACS Catal.
2
22
H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J., Jr.;
Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.;
Templer, R.; Tschaplinski, T. Science 2006, 311, 484−489.
(2) (a) Miller, J. A.; Nelson, J. A.; Byrne, M. P. J. Org. Chem. 1993,
5
8, 18−20. (b) Foglia, T. A.; Barr, P. A. J. Am. Oil Chem. Soc. 1976, 53,
737−741. (c) Gooßen, L. J.; Rodríguez, N. Chem. Commun. 2004,
724−725. (d) Le Notre, J.; Scott, E. L.; Franssen, M. C. R.; Sanders, J.
P. M. Tetrahedron Lett. 2010, 51, 3712−3715.
3) (a) Maetani, S.; Fukuyama, T.; Suzuki, N.; Ishihara, D.; Ryu, I.
Organometallics 2011, 30, 1389−1394. (b) Ternel, J.; Lebarbe, T.;
Monflier, E.; Hapiot, F. ChemSusChem 2015, 8, 1585−1592.
4) (a) Lambert, M. A.; Moss, C. W. J. Clin. Microbiol. 1980, 12,
36
basis set was used for H, C, O, and P with an additional diffuse
37
38
̂
function for O, and the SDD effective core potential and its
associate double-ζ basis set was employed for Ni. All minima and
transition states were confirmed by analytical vibrational frequency
calculations at 463.15 K, and a single imaginary frequency was
confirmed for each transition-state structure. Intrinsic reaction
coordinates were checked to confirm that transition states connect
to the corresponding reactants and products. All frequencies below
0 cm were replaced by 50 cm when accounting for thermal
contributions to vibrational partition functions.
Solvation effects were incorporated through single point (SP)
energy calculations using the SMD continuum solvation model.
Butanoic acid (ε = 2.85) was chosen as a solvent to mimic the pivalic
acid (ε = 2.98) environment. In SP calculations, the SDD basis set
with an additional f function was used for Ni, and the 6-311+
G(d,p) basis set was used for the other atoms. All Gibbs free
energies for all species (except as otherwise discussed for gaseous CO)
were corrected by a factor of RT ln(38.0), corresponding to 3.3 kcal
mol for standard-state corrections from 1 atm gas to 1 M solution.
(
́
(
39
291−293. (b) Muller, A. J.; Bowers, J. S.; Eubanks, J. R. I.; Geiger, C.
C.; Santobianco, J. G. U.S. Patent 5,939,581 1999.
−1
−1
5
40
(
5) Le No
Green Chem. 2011, 13, 807−809.
6) Miranda, M. O.; Pietrangelo, A.; Hillmyer, M. A.; Tolman, W. B.
Green Chem. 2012, 14, 490−494.
7) Liu, Y.; Kim, K. E.; Herbert, M. B.; Fedorov, A.; Grubbs, R. H.;
Stoltz, B. M. Adv. Synth. Catal. 2014, 356, 130−136.
8) John, A.; Hogan, L. T.; Hillmyer, M. A.; Tolman, W. B. Chem.
̂
tre, J.; Scott, E. L.; Franssen, M. C. R.; Sanders, J. P. M.
4
1
(
42
42
(
43
44
(
+
Commun. 2015, 51, 2731−2733.
(9) Maetani, S.; Fukuyama, T.; Suzuki, N.; Ishihara, D.; Ryu, I. Chem.
Commun. 2012, 48, 2552−2554.
−1
(
10) (a) Trost, B. M.; Chen, F. Tetrahedron Lett. 1971, 12, 2603−
2
607. (b) Dauben, W. G.; Rivers, G. T.; Twieg, R. J.; Zimmerman, W.
ASSOCIATED CONTENT
Supporting Information
■
T. J. Org. Chem. 1976, 41, 887−889.
*
S
(
12.
11) Goto, T.; Onaka, M.; Mukaiyama, T. Chem. Lett. 1980, 9, 709−
7
(12) Wenkert, E.; Chianelli, D. J. Chem. Soc., Chem. Commun. 1991,
627−628.
(13) (a) Suzuki, N.; Tahara, H.; Ishihara, D.; Danjo, H.; Mimura, T.;
Experimental details, representative GC and GC-MS
Cartesian coordinates for all optimized species (PDF)
Ryu, I.; Fukuyama, T. U.S. Patent 2011/0190564A1 2011. (b) Suzuki,
N.; Tahara, H.; Ishihara, D.; Danjo, H.; Ryu, I.; Fukuyama, T. U.S.
Patent 2013/0296626A1, 2013.
Crystallographic data for Ni(CO)(PPh ) (CIF)
3
3
(14) (a) Kron, T. E.; Lopatina, V. S.; Morozova, L. N.; Lebedev, S.
A.; Isaeva, L. S.; Kravtsov, D. N.; Petrov, S. Bull. Acad. Sci. USSR, Div.
Chem. Sci. 1989, 38, 703−707. (b) Yi, C.; Hua, R.; Zeng, H. Catal.
Commun. 2008, 9, 85−88. (c) Faissner, R.; Huttner, G. Eur. J. Inorg.
Chem. 2003, 2003, 2239−2244. (d) Jin, J.; RajanBabu, T. V.
Tetrahedron 2000, 56, 2145−2151.
AUTHOR INFORMATION
■
*
*
*
*
(15) (a) Peng, J.; Li, J.; Qiu, H.; Jiang, J.; Jiang, K.; Mao, J.; Lai, G. J.
Mol. Catal. A: Chem. 2006, 255, 16−18. (b) Myagmarsuren, G.; Tkach,
V. S.; Shmidt, F. K.; Mohamad, M.; Suslov, D. S. J. Mol. Catal. A:
Chem. 2005, 235, 154−160. (c) Bedford, R. B.; Betham, M.; Blake, M.
Author Contributions
§
E.; Garces
́
, A.; Millar, S. L.; Prashar, S. Tetrahedron 2005, 61, 9799−
A. John, M. O. Miranda, and K. Ding contributed equally to
the experimental work.
9
807. (d) Fanfoni, L.; Meduri, A.; Zangrando, E.; Castillon, S.; Felluga,
F.; Milani, B. Molecules 2011, 16, 1804−1824.
Notes
(16) Bhalla, G.; Oxgaard, J.; Goddard, W. A.; Periana, R. A.
Organometallics 2005, 24, 5499−5502.
The authors declare no competing financial interest.
(
17) Lee, D. W.; Yi, C. S. Organometallics 2010, 29, 3413−3417.
(18) (a) Sano, K.; Yamamoto, T.; Yamamoto, A. Chem. Lett. 1983,
ACKNOWLEDGMENTS
■
1
15−118. (b) Sano, K.; Yamamoto, T.; Yamamoto, A. Bull. Chem. Soc.
Jpn. 1984, 57, 2741−2747. (c) Fischer, R.; Nestler, B.; Schutz, H. Z.
Anorg. Allg. Chem. 1989, 577, 111−114. (d) Doring, M.; Kosemund,
D.; Uhlig, E.; Go
(e) Fischer, R.; Walther, D.; Kempe, R.; Sieler, J.; Scho
Organomet. Chem. 1993, 447, 131−136.
We thank the National Science Foundation (Graduate
Research Fellowship under Grant No. 00006595 to M.O.M.),
the Center for Sustainable Polymers, a National Science
Foundation supported Center for Chemical Innovation
̈
̈
̈
rls, H. Z. Anorg. Allg. Chem. 1993, 619, 1512−1518.
̈
necker, B. J.
(
CHE-1136607 and CHE-1413862), and the Department of
I
Organometallics XXXX, XXX, XXX−XXX