ChemCatChem
10.1002/cctc.201701892
FULL PAPER
Reactivity Studies. Reactivity experiments for the coupling of
methane were performed in a packed bed reactor. The studies
were performed using 200 mg of catalyst sieved to 75 µm.
References
[
1]
016, 6, 424-429.
2] X.G. Guo, G.Z. Fang, G. Li, H. Ma, H.J. Fan, L. Yu, C. Ma, X. Wu, D.H.
K. Narsimhan, K. Iyoki, K. Dinh, Y. Roman-Leshkov, ACS Cent. Sci.
2
[
o
Catalyst samples were activated in-situ at 450 C in nitrogen for
an hour prior to reactivity studies. A space velocity of 3000 h-1 of
reactant gas diluted in nitrogen (5% methane) was employed.
The reaction was run at 350 ˚C, 450 ˚C and 500 ˚C for 8 h at
each reaction temperature. A 100 ccm total flow rate of gas was
used. The reactor was connected to an online Bruker 450-GC
refinery gas analyzer (RGA) and a Hiden HPR20 mass
spectrometer. The RGA is equipped with two TCD detectors and
a FID. One TCD is used for analysis of hydrogen and the
second for analysis of permanent gas mixtures (including
methane). The FID channel allows for identification of methane
and higher hydrocarbons. The TCD for hydrogen gas analysis
uses a Molsieve 5A column while the TCD for permanent gas
analysis uses a Molsieve 13x and Hayseep Q columns in series.
The column to the FID is a BR-1. The GC was calibrated for all
reactant and product gases by flowing 3-4 known amounts of
the gas in question at the same temperature used in the reaction
and monitoring the peak areas. Product gas was sampled at 10
minutes intervals using the RGA. The following definitions were
used:
Deng, M.M. Wei, D.L. Tan, R. Si, S. Zhang, J.Q. Li, L.T. Sun, Z.C. Tang, X.L.
Pan, X.H. Bao, Science. 2014, 344, 616-619.
[
3]
Science 2017, 356, 523-527.
4] C. Okolie, Y. F. Belhseine, Y. Lyu, M. M. Yung, M. H. Engelhard, L.
Kovarik, E. Stavitski, C. Sievers, Angew. Chem. Int. Ed. 2017, 56, 13876-
3881.
[5]
6]
664.
[7]
V.L. Sushkevich, D. Palagin, M. Ranocchiari, J.A. van Bokhoven,
[
1
T. Ito, J. H. Lunsford, Nature 1985, 314, 721-722.
S. Kasztelan, J. B. Moffat, J. Chem. Soc.-Chem. Comm. 1987, 1663-
[
1
J. H. Lunsford, P. Qiu, M. P. Rosynek, Z. Q. Yu, J. Phys. Chem. B
P. Pereira, S. H. Lee, G. A. Somorjai, H. Heinemann, Catal. Lett. 1990,
1
[
998, 102, 167-173.
8]
6, 255-262.
[9]
R. A. Periana, D. J. Taube, E. R. Evitt, D. G. Loffler, P. R. Wentrcek, G.
Voss, T. Masuda, Science 1993, 259, 340-343.
10] R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii,
Science 1998, 280, 560-564.
11] M. G. Poirier, A. R. Sanger, K. J. Smith, Canadian J. Chem. Eng.
991, 69, 1027-1035.
12] S. Rezgui, A. Liang, T. K. Cheung, B. C. Gates, Catal. Lett. 1998, 53,
1-2.
13] M. Sigl, M. C. J. Bradford, H. Knozinger, M. A. Vannice, Top. Catal.
999, 8, 211-222.
[14] F. Solymosi, G. Kutsan, A. Erdohelyi, Catal. Lett. 1991, 11, 149-156.
15] M. C. Wu, C. M. Truong, K. Coulter, D. W. Goodman, J. Catal. 1993,
40, 344-352.
16] N. Yamagata, K. Tanaka, S. Sasaki, S. Okazaki, Chem. Lett. 1987, 81-
82.
17] C. Hammond, S. Conrad, I. Hermans, ChemSusChem 2012, 5, 1668-
686.
18] D. Schanke, E. Rytter, F. O. Jaer, Nat. Gas Conv. Vii 2004, 147, 43-48.
[19] R. A. S. T. H. Fleisch, M. D. Briscoe, J. Nat. Gas Chem. 2002, 11, 1-14.
20] A. Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 2007, 107, 1692-
1744.
21] U.S. Crude Oil and Natural Gas Proved Reserves, 2015 ed., U.S.
Energy Information Agency, Washington D.C., U.S.A., 2016.
22] J. H. Lunsford, Stud. Surf. Scien. and Catal. 1993, 75, 103-126.
[23] Y. D. Xu, X. H. Bao, L. W. Lin, J. Catal. 2003, 216, 386-395.
24] J. Gao, Y. T. Zheng, J. M. Jehng, Y. D. Tang, I. E. Wachs, S. G.
Podkolzin, Science 2015, 348, 686-690.
25] T. Koerts, R. A. Vansanten, J. Chem. Soc.-Chem. Comm. 1991, 1281-
283.
26] D. Soulivong, S. Norsic, M. Taoufik, C. Coperet, J. Thivolle-Cazat, S.
Chakka, J. M. Basset, J. Am. Chem. Soc. 2008, 130, 5044-5045.
27] K. C. Szeto, S. Norsic, L. Hardou, E. Le Roux, S. Chakka, J. Thivolle-
Cazat, A. Baudouin, C. Papaioannou, J. M. Basset, M. Taoufik, Chem. Comm.
010, 46, 3985-3987.
[28] T. Matich, Tantalum Price Trends 2015, ed., Investing News Network,
015.
29] P. Kumar, Y. Sun, R. O. Idem, Energy & Fuels 2007, 21, 3113-3123.
[30] J. B. Wang, Y. S. Wu, T. J. Huang, Appl. Catal. A 2004, 272, 289-298.
31] T. L. Zhu, M. Flytzani-Stephanopoulos, Appl. Catal. A 2001, 208, 403-
17.
32] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 2016,
116, 5987-6041.
[
[
1
[
[
1
[
1
[
ꢂꢃꢄꢅ,ꢆꢇ − ꢂꢃꢄꢅ,ꢈꢉꢊ
Conversion: ꢀ [%] =
x 100
ꢁ
ꢂꢃꢄꢅ,ꢆꢇ
[
1
[
ꢍꢌ . ꢂꢌ,ꢈꢉꢊ
C Product Selectivity: ꢋ [%] =
x 100
ꢌ
ꢂꢃꢄꢅ,ꢆꢇ− ꢂꢃꢄꢅ,ꢈꢉꢊ
[
ꢂꢄꢎ,ꢈꢉꢊ
H
2
yield: [%] =
x 100
[
ꢎ.ꢂꢃꢄꢅ,ꢆꢇ
[
p
Where ν is the number of carbon atoms in the compound and
[
F
x
is the molar flow rate of the gas in question.
[
1
[
Acknowledgements
[
The work was performed with funds from the Petroleum
Research Fund of the American Chemical Society (grant
number: 53873) and the U.S. Department of Energy (DOE)
Office of Basic Energy Science under Contract No. DE-
SC0016486. The XAS data was obtained at beamline 9-BM of
the Advanced Photon Source, a U.S. Department of Energy
2
2
[
[
4
[
(
DOE) Office of Science User Facility operated for the DOE
[
[
33] H. S. Roh, I. H. Eum, D. W. Jeong, Renew. Energ. 2012, 42, 212-216.
34] S. Rossignol, Y. Madier, D. Duprez, Catal. Tod. 1999, 50, 261-270.
Office of Science by Argonne National Laboratory under
Contract No. DE-AC02-06CH11357. EDX mapping and XPS
were performed using EMSL, a DOE Office Science User
Facility sponsored by the Office of Biological and Environmental
Research. The Renewable Bio-products Institute at the Georgia
Institute of Technology is thanked for the use of its facilities. We
thank Yasmeen Belhseine for experimental support, Alejandro
Da Silva Sanchez for help with Raman spectroscopy and Mark
Engelhard for help with XPS analysis.
[35] S. M. Schimming, G. S. Foo, O. D. LaMont, A. K. Rogers, M. M. Yung,
A. D. D'Amico, C. Sievers, J. Catal. 2015, 329, 335-347.
[36] L. Espinosa-Alonso, K. P. de Jong, B. M. Weckhuysen, J. Phys. Chem.
C 2008, 112, 7201-7209.
[37] S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60,
3
[
3
[
09-319.
38] E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 1951, 73,
73-380.
39] M. Tamura, K. Shimizu, A. Satsuma, Appl. Catal. A 2012, 433, 135-
45.
1
[
[
40] S. Tanuma, C. J. Powell, D. R. Penn, Surf. Inter. Anal. 1993, 20, 77-89.
41] J. Wang, V. F. Kispersky, W. N. Delgass, F. H. Ribeiro, J. Catal. 2012,
2
89, 171-178.
Keywords: Lewis acid • carbon nanotubes • dispersion • coking
[42] S. Rossignol, F. Gerard, D. Duprez, J. Mat. Chem. 1999, 9, 1615-1620.
•
nickel oxide
[43] P. Fornasiero, T. Montini, M. Graziani, J. Kaspar, A. B. Hungria, A.
Martinez-Arias, J. C. Conesa, Phys. Chem. Chem. Phys. 2002, 4, 149-159.
This article is protected by copyright. All rights reserved.