4
4
T. Odedairo, S. Al-Khattaf / Applied Catalysis A: General 385 (2010) 31–45
Table 11
energies for benzene ethylation were found to decrease as fol-
Estimated kinetic parameters for TNU-9 catalyst based on reactant conversion (RC
model).
lows: Em1 > EZ1 > ES1 > ETNU-1
.
Parameters
Values
Acknowledgements
kTNU-1
kTNU-2
kTNU-3
kTNU-4
ꢀ
Ei (kJ/mol)
10.44
2.71
0.116
0.067
15.20
1.36
2.700
0.060
24.51
5.79
0.362
0.022
12.82
3.52
16.67
8.13
2.44
0.93
The authors acknowledge the financial support provided by King
AbdulAziz City for Science and Technology for this research under
the Refining & Petrochemicals Program of the National Science and
Technology Plan (NSTP) for the year 2009 (09-PETE86-4). We are
grateful for the support from Ministry of Higher Education, Saudi
Arabia for the establishment of the Center of Research Excellence
in Petroleum Refining and Petrochemicals at King Fahd University
of Petroleum and Minerals (KFUPM). The authors thank J. Cejka
and M. Kubu (Heyrovsky Institute of Physical Chemistry, Prague,
Czech Republic) for providing zeolites TNU-9 and SSZ-33 and their
characterization.
9
5% CL
a
4
3
k0i × 10 [m /(kg of catalyst.s)]
4
9
5% CL × 10
a
6
Pre-exponential factor as obtained from Eq. (11); unit for second order (m /kg
of catalyst s).
catalysts is not unusual, since alkylation reactions of long substi-
tuted benzene generally occur with greater ease compared to their
shorter substituted counterparts [47].
It is evident from Tables 4 and 5 that the increase in temperature
leads to a larger fraction of cracking products, which clearly vali-
date the higher apparent activation energies noticed for EB cracking
References
(
67.97 and 15.20 kJ/mol) over SSZ-33 and TNU-9-based catalysts,
respectively, as compared with the apparent energies of activa-
tion obtained for benzene ethylation (12.29 and 10.44 kJ/mol) over
both catalysts. This important difference in energies of activation
is in perfect agreement with previous study [38]. Sridevi et al. [61]
and Barman et al. [18] reported an apparent energy of activation of
[
[
1] J. Cejka, B. Wichterlova, Catal. Rev. 44 (2002) 375–421.
2] T. Degnan, Appl. Catal. A 221 (2001) 283–294.
[3] N.M. Tukur, S. Al-Khattaf, Catal. Lett. 131 (2009) 225–233.
[
[
[
4] J. Weikamp, L. Puppe, Catalysis and Zeolites, Springer, Berlin, 1999, pp. 81.
5] C. Perego, P. Ingallina, Catal. Today 73 (2002) 3–22.
6] N.Y. Chen, W.E. Garwood, Catal. Rev. Sci. Eng. 28 (1986) 185–264.
6
0.03 and 56 kJ/mol for ethylation of benzene over AlCl3 impreg-
[7] A. Corma, M.E. Domine, S. Valencia, J. Catal. 215 (2003) 294–304.
[
8] N. Zilkova, M. Bejblova, B. Gil, S.I. Zones, A.W. Burton, C.Y. Chen, Z. Musilova-
Pavlackova, G. Kosova, J. Cejka, J. Catal. 266 (2009) 79–91.
9] S. Kato, K. Nakagawa, N. Ikenaga, T. Suzuki, Catal. Lett. 73 (2001) 2–4.
nated 13× zeolite and cerium exchange NaX zeolite, respectively.
These values are in agreement, or have the same order with the
value obtained in this present study for benzene ethylation over
mordenite-based catalyst.
Graphical comparisons between experimental and model pre-
dictions for the reactant conversion model (RC) based on the
optimized parameters for mordenite and ZSM-5 are shown
[
[10] P.B. Venuto, L.A. Hamilton, P.S. Landis, J.J. Wise, J. Catal. 5 (1966) 81–98.
[11] C.G. Wight, US Patent 4, 169 (1979) 111.
12] G. Bellusi, G. Pazzuconi, C. Perego, G. Girotti, G. Terzoni, J. Catal. 157 (1995)
27–234.
13] L. Forni, G. Cremona, F. Missineo, G. Bellusi, C. Perego, G. Pazzuconi, Appl. Catal.
121 (1995) 261–272.
14] J. Cejka, B. Wichterlova, S. Bednarova, Appl. Catal. 79 (1991) 215–226.
15] M. Raimondo, G. Perez, A. De Stefanis, A.A.G. Tomilinson, O. Ursini, Appl. Catal.
A 164 (1997) 119–126.
[
2
[
[
[
in Figs.
3 and 4, respectively. It can be seen that the
model predictions compared very well with the experimental
data.
[16] V.R. Vijayaraghavan, K.J.A. Raj, J. Mol. Catal. A 207 (2004) 41–50.
17] N.N. Binitha, S. Sugunan, Micropor. Mesopor. Mater. 93 (2006) 82–89.
18] S. Barman, N.C. Pradhan, J.K. Basu, Indian Chem. Eng. A 48 (2006) 10–17.
[
[
5
. Conclusions
[19] R.T. Sebulsky, A.M. Henke, Ind. Eng. Chem. Process Des. Dev. 10 (1971) 272–279.
[
[
[
20] T.J.L. Berna, D.A. Moreno, European Patent Appl. EP 0 353 (1991) 813.
21] L.B. Young, US Patent 4, 301 (1981) 317.
22] J. Cejka, A. Vondrova, B. Wichterlova, G. Vorbeck, R. Fricke, Zeolites 14 (1994)
147–153.
The following conclusions can be drawn from the ethylation
reaction of benzene with ethanol over ZSM-5-, TNU-9-, SSZ-33-
and mordenite-based catalyst.
[
[
23] J. Cejka, N. Zilkova, B. Wichterlova, Collect. Czech. Chem. Comm. 61 (1996)
1115–1130.
24] B. Wichterlova, J. Cejka, N. Zilkova, Microporous Mat. 6 (1996) 405–414.
1
2
. The zeolite structure in combination with the reaction temper-
ature determines the types of reactions that occur.
. Ethylbenzene selectivity was found to be highest in the ethy-
lation reaction over ZSM-5-based catalyst as compared to its
ethylation over all other zeolite catalysts.
. SSZ-33-based catalyst produced the highest benzene conver-
sion as compared to its conversion over ZSM-5-, TNU-9- and
mordenite-based catalyst.
. Considerable amount of toluene was obtained in the ethylation
over SSZ-33-based catalyst, while negligible amount was noticed
over mordenite-based catalyst. It can be concluded that acidity
plays a major role in toluene formation over these zeolites.
. An increase in the concentration of Lewis acid sites was observed
after modification of the parent zeolites with alumina binder.
. In the ethylation reaction over mordenite- and ZSM-5-based cat-
alyst, the apparent activation energy for EB ethylation (Em2 and
Ez2) was found to be lower than the apparent energy of activa-
tion obtained for benzene ethylation (Em1 and Ez1), which shows
that reactivity of the alkylbenzenes increases as the number of
ethyl group per benzene ring increases.
[25] P.K. Bajpai, Zeolites 6 (1986) 2–8.
[
[
26] I.E. Maxwell, W.H.J. Stork, in: H. von Bekkum, E.M. Flanigen, J.C. Jonsen (Eds.),
Introduction to Zeolite Science and Practice, Elsevier, Amsterdam, 1991, p. 71.
27] L.D. Fernandes, J.L.F. Moneteiro, E.F. Sousa-Aguiar, A. Martinez, A. Corma, J.
Catal. 177 (1998) 363–377.
[28] J.E. Gilbert, A. Mosset, Mater. Res. Bull. 33 (1998) 997–1003.
[29] Pierre Levesque, Le H. Dao, Appl. Catal., 53 (1989) 157–167.
[30] J. Gao, L. Zhang, J.X. Hu, W. Li, J.G. Wang, Catal. Comm. 10 (2009) 1615–1619.
3
4
[31] K.H. Chandawar, S.B. Kulkarni, P. Ratnaswamy, Appl. Catal. A 4 (1982) 287–295.
[
[
32] T. Odedairo, S. Al-Khattaf, Chem. Eng. J. 157 (2010) 204–215.
33] J.R. Anderson, K. Foger, T. Mole, R.A. Rajyadhyaksha, J.V. Sanders, J. Catal. 58
(
1979) 114–130.
[34] J.R. Anderson, T. Mole, V. Christov, J. Catal. 61 (1980) 477–484.
[
[
35] Y.S. Bhat, A.B. Halgeri, T.S.R. Prasada Rao, Ind. Eng. Chem. Res. 28 (1998)
94–899.
36] B. Lee, I. Wang, Ind. Eng. Chem. Prod. Res. Dev. 24 (1985) 201–208.
8
5
6
[37] I. Wang, S.J. Li, J.Y. Liu, In: Int. Symp. Zeolites and Microporous Crystals, Sendai,
Japan, 2 LC 01, 6-9 August 2000.
[
[
38] T. Odedairo, S. Al-Khattaf, Ind. Eng. Chem. Res. 49 (2010) 1642–1651.
39] P. Wagner, Y. Nakagawa, G.S. Lee, M.E. Davis, S. Elomari, R.C. Medurd, S.I. Zones,
J. Am. Chem. Soc. (2000) 122–263.
[40] A. Corma, F.J. L1opis, C. Martinez, G. Sastre, S. Valencia, J. Catal. 268 (2009) 9–17.
[
41] J. Cejka, N. Zilkova, S.I. Zones, M. Bejblova, 18th Saudi Japan Symposium,
November, 2008.
[
42] F. Gramm, C. Baerlocher, L.B. McCusker, S.J. Warrender, P.A. Wright, B. Han, S.B.
Hong, Z. Liu, T. Ohsuna, O. Terasaki, Nature 444 (2006) 79–81.
43] C.A. Emeis, J. Catal. 141 (1993) 347–354.
[
[
7
. Kinetic parameters for benzene ethylation over all the stud-
ied zeolites were calculated using the catalyst activity decay
function based on reactant conversion. The apparent activation
44] B. Gil, S.I. Zones, S.J. Hwang, M. Bejblova, J. Cejka, J. Phys. Chem. 112 (2008)
2997–3007.
[45] de Lasa, H.I., US Patent 5, 102 (1991) 628.