Communication
ChemComm
and O. Rieser, Angew. Chem., Int. Ed., 2015, 54, 6999; (e) P. Riente and
M. Pericas, ChemSusChem, 2015, 8, 1841; ( f ) J. Gu, Q.-Q. Min, L. Yu and
X. Zhang, Angew. Chem., Int. Ed., 2016, 55, 12270; (g) M. Daniel,
G. Dagousset, P.-A. Klein, B. Tuccio, A.-M. Goncalves, G. Masson and
E. Magnier, Angew. Chem., Int. Ed., 2017, 56, 3997; (h) D. Wang, F. Wang,
P. Chen, Z. Lin and G. Liu, J. Am. Chem. Soc., 2017, 56, 2054.
3
4
(a) Q. Chen, Z. Yang, C. Zhao and Z. Qiu, J. Chem. Soc., Perkin Trans. 1,
1
988, 563; (b) T. Xu, C. W. Cheung and X. Hu, Angew. Chem., Int. Ed.,
2014, 53, 4910; (c) Z. Li, A. G. Dominguez and C. Nevado, J. Am. Chem.
Soc., 2015, 137, 11610; (d) S. Domanski and W. Chaładaj,
ACS Catal., 2016, 6, 3452; (e) Y. He, Q. Wang, L. Li, X. Liu, P. Xu and
Y. Liang, Org. Lett., 2015, 17, 5188; ( f ) Q. Wang, Y. He, J. Zhao, Y. Qiu,
L. Zheng, J. Hu, Y. Yang, X. Liu and Y. Liang, Org. Lett., 2016, 18, 2664;
(g) Y. He, L. Li, Q. Wang, W. Wu and Y. Liang, Org. Lett., 2016, 18, 5158.
(a) A. Ogawa, M. Imura, N. Kamada and T. Hirao, Tetrahedron Lett.,
Scheme 4 Proposed mechanism.
2
6
001, 42, 2489; (b) Z.-M. Qiu and D. J. Burton, J. Org. Chem., 1995,
0, 3465; (c) K. Tsuchii, M. Imura, N. Kamada, T. Hirao and A. Ogawa,
J. Org. Chem., 2004, 69, 6658; (d) C.-J. Wallentin, J. D. Nguyen,
P. Finkbeiner and C. R. J. Stephenson, J. Am. Chem. Soc., 2012,
Based on these investigations and previous reports, a plausible
7c,d
mechanism was proposed (Scheme 4).
exchange delivered a Cu species, which was reduced by the
Firstly, the rapid ligand
1
34, 8875; (e) R. Beniazza, R. Atkinson, C. Absalon, F. Castet, S. A.
II
Denisov, N. D. McClenaghan, D. Last ´e couer `e s and J.-M. Vincent,
Adv. Synth. Catal., 2016, 358, 2949; Y. Wang, J. Wang, G.-X. Li, G. He
and G. Chen, Org. Lett., 2017, 19, 1442.
electron rich tert-amine and formed an amine radical cation and
I 14
I
Cu . Under UV light irradiation, Cu was excited to its triplet state
5
Ni-Catalyzed three component aryldifluoroalkylation of enamides using
I
11
[
Cu ]*. The following oxidative quenching step converted R I into
Br/ClCF
6 (a) P. Eisenberger, S. Gischig and A. Togni, Chem. – Eur. J., 2006, 12, 2579;
b) T. Umemoto and S. Ishihara, J. Am. Chem. Soc., 1993, 115, 2156.
2 2
CO Et was reported by Zhang and co-workers, see: ref. 2f.
f
ꢀ
À
II 10
ꢀ
Rf and I along with recycling of Cu . Meanwhile, R attacked
f
(
alkene to give the radical intermediate A. Then, it reacted with
7
(a) S. Mizuta, S. Verhoog, K. M. Engle, T. M. Khotavivattana, O. Duill,
K. Wheelhouse, G. Rassias, M. M ´e debielle and V. Gouverneur, J. Am.
Chem. Soc., 2013, 135, 2505; (b) Y. He, L. Li, Y. Yang, Z. Zhou, H. Hua,
X. Liu and Y. Liang, Org. Lett., 2014, 16, 270; (c) Z. Liang, F. Wang, P. Chen
and G. Liu, J. Fluorine Chem., 2014, 167, 55; (d) F. Wang, D. Wang, X. Wan,
L. Wu, P. Chen and G. Liu, J. Am. Chem. Soc., 2016, 138, 15547; (e) N. Zhu,
F. Wang, P. Chen, J. Ye and G. Liu, Org. Lett., 2015, 17, 3580; ( f ) Z. Liang,
F. Wang, P. Chen and G. Liu, Org. Lett., 2015, 17, 2438; (g) L. Wu,
F. Wang, X. Wan, D. Wang, P. Chen and G. Liu, J. Am. Chem. Soc., 2017,
139, 2904; (h) X.-L. Yu, J.-R. Chen, D.-Z. Chen and W.-J. Xiao, Chem.
Commun., 2016, 52, 8275; (i) W. Zhang, F. Wang, S. D. McCann, D. Wang,
P. Chen, S. S. Stahl and G. Liu, Science, 2016, 353, 1014.
II
III
Cu (CN)
n
and formed a Cu species, B. The subsequent reductive
elimination provided the desired cyanofluoroalkylation product. It
I
II
should be noted that both Cu and Cu salts showed good catalytic
activities (Table 1, entries 4 and 6). These results indicated that
II
I
the catalytic cycle could be initiated either from Cu or from Cu .
+
À
Unstable species TMS and I undergo rapid hydrolysis and then
neutralized by amine, which promoted a complete conversion.
17
In conclusion, the first example of photoinduced, Cu-catalyzed
three component cyanofluoroalkylation of alkenes was disclosed.
The reactions were effective for the introduction of both perfluoro-
alkyl and trifluoromethyl groups by directly using the fluoroalkyl
iodides. A 25 W UVC compact fluorescent light bulb irradiation was
sufficient for functionalization of a broad range of simple and
complex alkenes at room temperature. Compared with previously
reported cyanotrifluoromethylation of alkenes, our method showed
8
9
3
CF I is a feedstock reagent which could be supplied as 100 kg per
pack, and the price is B$900 per kg (Alibaba). In sharp contrast, the
price of Togni’s reagent is B$150 per g (Acros, the biggest pack-size
is 5 g); the price of Umemoto’s reagent is $108 per g (Sigma-Aldrich,
the biggest pack-size is 1 g). C
4 9
F I is B$450 per kg (Alibaba) and
could be supplied in 1 kg per pack.
For leading reviews, see: (a) C. K. Prier, D. A. Rankic and
D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322; (b) D. Ravelli,
S. Protti and M. Fagnoni, Chem. Rev., 2016, 116, 9850.
significant advantages: (i) using less costly and feedstock CF
instead of expensive Togni’s or Umemoto’s reagent is more prac-
tical for large-scale synthesis; and (ii) besides CF , a variety of
fluoroalkyl groups (–C , –C 13, –C 17, and –CF CO Et) could be
introduced with high yields.
3
I
10 For reviews, see: (a) S. Paria and O. Reiser, ChemCatChem, 2014,
, 2477; (b) O. Reiser, Acc. Chem. Res., 2016, 49, 1990.
6
1
1 (a) T. S. Ratani, S. Bachman, G. C. Fu and J. C. Peters, J. Am. Chem.
Soc., 2015, 137, 13902; (b) C. Uyeda, Y. Tan, G. C. Fu and J. C. Peters,
J. Am. Chem. Soc., 2013, 135, 9548; (c) D. T. Ziegler, J. Choi,
J. M. Mu n˜ oz-Molina, A. C. Bissember, J. C. Peters and G. C. Fu,
J. Am. Chem. Soc., 2013, 135, 13107; (d) H.-Q. Do, S. Bachman,
A. C. Bissember, J. C. Peters and G. C. Fu, J. Am. Chem. Soc., 2014,
136, 2162; (e) F. Yang, J. Koeller and L. Ackermann, Angew. Chem.,
Int. Ed., 2016, 55, 4759; ( f ) J. M. Ahn, T. S. Ratani, K. I. Hannoun,
G. C. Fu and J. C. Peters, J. Am. Chem. Soc., 2017, 139, 12716.
2 D. A. Nagib, M. E. Scott and D. W. C. MacMillan, J. Am. Chem. Soc.,
3
4
F
9
6
F
8
F
2
2
We are grateful for the grants from the NSFC (No. 21432003)
and Fundamental Research Funds for the Central Universities
lzujbky-2017-127).
(
1
1
1
2009, 131, 10875.
Conflicts of interest
3 A 25 W UVC bulb was used, which can be purchased from a
supermarket (B$9 for each).
4 (a) A. Baralle, L. Fensterbank, J.-P. Goddard and C. Ollivier, Chem. –
Eur. J., 2013, 19, 10809; (b) B. Michelet, C. Deldaele, S. Kajouj,
C. Moucheron and G. Evano, Org. Lett., 2017, 19, 3576.
5 CCDC 1552550 (6e)†.
There are no conflicts to declare.
Notes and references
1
1
P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis Reactivity, 16 For detailed information and additional experiments, see the ESI†.
Applications, Wiley, New York, 2nd edn, 2013.
For reviews, see: (a) K. H. Jensen and M. S. Sigman, Org. Biomol. Chem.,
17 Other examples using stoichiometric amounts of tert-amines as electron
transfer agents in photoredox reactions, see ref. 14 and also (a) J. L. Jeffrey,
F. R. Petronijevic and D. W. C. MacMillan, J. Am. Chem. Soc., 2015,
137, 8404; (b) F. R. Petronijevic, M. Nappi and D. W. C. MacMillan, J. Am.
Chem. Soc., 2013, 135, 18323; (c) A. G. Amador, E. M. Sherbrook and
T. P. Yoon, J. Am. Chem. Soc., 2016, 138, 4722.
2
2
008, 6, 4083; (b) C. K. Prier, D. A. Rankic and D. W. C.
MacMillan, Chem. Rev., 2013, 113, 5322; (c) J. M. R. Narayaman and
C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102. For recent examples,
see: (d) D. B. Bagal, G. Kachkovskyi, M. Knorn, T. Rawner, B. M. Bhanage
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2017