10.1002/anie.201800713
Angewandte Chemie International Edition
COMMUNICATION
properties of long wavelength-excitation, rapid photolysis and
photobleaching, thus indicating that the new coumarin-based
PPGs are extremely beneficial for diverse applications in
chemical synthesis, biological manipulation and material
manufacturing.
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (21425311 and 21774030).
Keywords: photoremovable protecting groups • coumarin
photocages • photocleavage • photochemistry • photolysis
[1]
P. Klán, T. ꢀolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V.
Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119-191.
G. C. R. Ellis-Davies, Nat. Methods. 2007, 4, 619-628.
M. J. Hansen, W. A. Velema, M. M. Lerch, W. Szymanski, B. L. Feringa,
Chem. Soc. Rev. 2015, 44, 3358-3377.
Figure 5. a) Temporal evolution of the uncaging process showed the superiority
of PPGs 1a and 2d with low competitive absorption compared to DEAC and o-
NB at different initial concentrations (2×10-4, 2×10-3 and 2×10-2 M). b) i)
Schematic illustration of photo-crosslinking gelation by 1a-HA or DEAC-HA with
PEG-4Mal; ii) Photographs of the specimens before and after light irradiation
(20 mW/cm-2) revealed the deeper light penetration in 1a-HA hydrogel than that
in DEAC-HA hydrogel; iii) The attenuation of light intensity (20 mW/cm2) after
transmitting hydrogel specimens with a thickness of 0.5 cm.
[2]
[3]
[4]
[5]
[6]
G. Mayer, A. Heckel, Angew. Chem. 2006, 118, 5020-5042; Angew.
Chem. Int. Ed. 2006, 45, 4900-4921.
C. Yang, M. W. Tibbitt, L. Basta, K. S. Anseth, Nat. Mater. 2014, 13, 645-
652.
A. Patchornik, B. Amit, R. B. Woodward, J. Am. Chem. Soc. 1970, 92,
6333-6335.
samples due to their unique photobleaching behavior. Figure 5a
shows the conversion curves of PPGs 1a and 2b as well as the
traditional DEAC and o-NB at different initial concentrations
(2×10-4, 2×10-3 and 2×10-2 M). Except for rapid photolysis, our
new PPGs 1a and 2b showed extremely high conversion that
remained up to 90% even when the initial concentration reached
to 2×10-2 M. However, the final conversions of DEAC and o-NB
with severe competitive absorption by the photolysis byproducts
are initial concentration-dependent, which sharply decreased to
15% and 11% at the high concentration of 2×10-2 M even after
long-term irradiation. To further indicate that the photobleaching
property also has benefits for uncaging in thick specimens, we
followed the idea of our previous work26 to prepare photo-
crosslinking hydrogel (Figure 5b i). Thiols-caged PPGs were
synthesized from 1a and DEAC and grafted to hyaluronic acid
(HA) to obtain photoresponsive polymer 1a-HA and DEAC-HA
(Figure S9). Upon light irradiation, photo-uncaged thiols of 1a-HA
and DEAC-HA induce rapid gelation with four-arm PEG tetra-
maleimide (PEG-4Mal) by thiol Michael addition (Figure S10 and
S11). The final thickness of 1a-HA hydrogel (1.8 cm) is much
higher than that of DEAC-HA hydrogel (0.5 cm) after enough light
irradiation from the bottom of specimens at 450 nm and 405 nm
respectively (Figure 5b ii). Meanwhile, the light intensity showed
99.8% attenuation after passing through the formed 0.5-cm
DEAC-HA hydrogel, while in contrast, only 28.1% light intensity
was attenuated under the same thickness of 1a-HA hydrogel
(Figure 5b iii and Figure S12). Overall, the unique photobleaching
behavior of our new PPGs successfully overcomes the inner
filtering effect of the photolysis byproduct and thus extremely
benefits the high concentration or thick samples.
[7]
J. C. Sheehan, R. M. Wilson, J. Am. Chem. Soc. 1964, 86, 5277-5281.
C.-H. Park, R. S. Givens, J. Am. Chem. Soc. 1997, 119, 2453-2463.
R. S. Givens, B. Matuszewski, J. Am. Chem. Soc. 1984, 106, 6860-6861.
K. Kalka, H. Merk, H. Mukhtar, J. Am. Acad. Dermatol. 2000, 42, 389-
413.
[8]
[9]
[10]
[11] G. Bort, T. Gallavardin, D. Ogden, P. I. Dalko, Angew.
Chem. 2013, 125, 4622-4634; Angew. Chem. Int. Ed. 2013, 52, 4526-
4537.
[12] H. K. Agarwal, R. Janicek, S.-H. Chi, J. W. Perry, E. Niggli, G. C. R. Ellis-
Davies, J. Am. Chem. Soc. 2016, 138, 3687-3693.
[13] Y. Chitose, M. Abe, K. Furukawa, J.-Y. Lin, T.-C. Lin, C. Katan, Org. Lett.
2017, 19, 2622-2625.
[14] T. Slanina, et al. J. Am. Chem. Soc. 2017, 139, 15168-15175.
[15] R. R. Nani, A. P. Gorka, T. Nagaya, H. Kobayashi, M. J. Schnermann,
Angew.Chem. 2015, 127,13839-13842; Angew. Chem. Int. Ed. 2015, 54,
13635-13638.
[16] D. P. Walton, D. Dougherty, A. J. Am. Chem. Soc. 2017, 139, 4655-4658.
[17] J. P. Olson, H.-B. Kwon, K. T. Takasaki, C. Q. Chiu, M. J. Higley, B. L.
Sabatini, G. C. R. Ellis-Davies, J. Am. Chem. Soc. 2013, 135, 5954-5957.
[18] L. Fournier, I. Aujard, T. L. Saux, S. Maurin, S. Beaupierre, J.-B. Baudin,
L. Jullien, Chem. Eur. J. 2013, 19, 17494-17507.
[19] A. Gandioso, M. Palau, A, Nin-Hill, I. Melnyk, C. Rovira,
S. Nonell, D. Velasco, J. García-Amorós, V. Marchán, ChemistryOpen
2017, 6, 375-384.
[20] B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, K. S. Anseth,
Biomaterials 2009, 30, 6702-6707.
[21] B. J. Coe, et al. Dyes Pigm. 2009, 82, 171-186.
[22] B. R. Cho, K. H. Son, S. H. Lee, Y.-S. Song, Y.-K. Lee, S.-J. Jeon, J. H.
Choi, H. Lee, M. Cho, J. Am. Chem. Soc. 2001, 123, 10039-10045.
[23] Q. Lin, C. Bao, S. Cheng, Y. Yang, W. Ji, L. Zhu, J. Am. Chem. Soc.
2012, 134, 5052-5055.
[24] T. Eckardt, V. Hagen, B. Schade, R. Schmidt, C. Schweitzer, J. Bendig,
J. Org. Chem. 2002, 67, 703-710.
In conclusion, we have successfully constructed a new class
of coumarin photocages modified with electron-rich styryl
moieties at the 3-position. Experimental measurements and DFT
computational calculations demonstrated their excellent
[25] S. Asmusen, G. Arenas, W. D. Cook, C. Vallo, Dent. Mater. 2009, 25,
1603-1611.
[26] Z. Liu, Q. Lin, Y. Sun, T. Liu, C. Bao, F. Li, L. Zhu, Adv. Mater. 2014, 26,
3912-3917.
This article is protected by copyright. All rights reserved.