11256
J. Am. Chem. Soc. 2000, 122, 11256-11257
trimethoxybenzene (TMB) capture12 of the daughter carbocations
(R+) formed from ROCCl. Together, these methods provide an
unusually complete natural history of carbene fragmentation and
the fate of the daughter carbocations.
We reexamined the fragmentation kinetics5 of 1, R ) PhCH2
and R ) 1-adamantylmethyl (AdCH2) in both MeCN (dielectric
constant ) 35.6) and in 1,2-dichloroethane (DCE, ꢀ ) 10.7). The
latter’s dielectric constant is similar to that of pyridine (ꢀ ) 12.3),
so that changes in solvent polarity due to pyridine dilution during
pyridine LFP determinations of kfrag are mitigated in DCE.9
New Kinetics Methodologies Applied to Carbene
Fragmentation Reactions
Robert A. Moss,*,† Lauren A. Johnson,† Shunqi Yan,†
John P. Toscano,*,‡ and Brett M. Showalter‡
Department of Chemistry
Rutgers, The State UniVersity of New Jersey
New Brunswick, New Jersey 08903
Department of Chemistry, Johns Hopkins UniVersity
Baltimore, Maryland 21218
Photolysis of 3-benzyloxy-3-chlorodiazirine (3) in MeCN led
to benzyloxychlorocarbene (1, R ) PhCH2), which fragmented
ReceiVed July 17, 2000
ReVised Manuscript ReceiVed September 22, 2000
to PhCH2 via ion pair 2,13 affording benzyl chloride and
+
+
N-benzylacetamide (from PhCH2 attack on MeCN); cf., eq 1.
Many alkoxychlorocarbenes (ROCCl, 1) readily fragment.1,2
When the “R” group affords a relatively stable carbocation,
fragmentation occurs via ion pair (2); cf., eq 1.1e-3
LFP studies using UV detection and pyridine ylide visualization6
kfrag
ROC¨ Cl
8 [R+ OC Cl-] f RCl + CO + other products
1
2
(1)
afford kfrag ) 3.6 ( 0.45 × 105 s-1 (Table 1). In DCE solvent,
where only PhCH2Cl is formed, the same LFP method gives kfrag
) 6.2 ( 0.2 × 104 s-1. A small solvent effect may operate here;
fragmentation is about 6 times faster in the more polar solvent,
reflecting the polar transition state for conversion of 1 f 2.14
However, when R is a simple primary alkyl group (e.g., n-butyl),
fragmentation becomes a bimolecular process driven by nucleo-
philic chloride attack on the carbene.4
We measured the rate constants (kfrag) of several fragmentation
reactions by laser flash photolysis (LFP).2,4,5 However, because
the ROCCl generally lacked sufficiently intense UV-active
chromophores, we relied on indirect kinetic monitoring of the
fragmentation, making use of the pyridine ylide carbene visualiza-
tion method.6 With this method, the fragmentation itself is not
directly observed, and the necessary dilution with pyridine,
sometimes to high concentrations (e.g., 7-8 M),7,8 can alter the
solvent polarity and distort the kinetics.9
We are pleased to report here the first direct observation of
carbene fragmentation, achieved by time-resolved infrared (TRIR)
monitoring10 of the appearance of CO; cf., eq 1.11 Additionally,
we disclose a second (indirect) kinetics method based on
LFP of 3 in MeCN or DCE was next monitored from 2000 to
2200 cm-1 by TRIR spectroscopy,10 using 0.5 mm IR cells and
A355(3) ) 0.5. A TRIR spectrum averaged from 7 to 9 µs
following the laser flash appears in the inset of Figure 1 (DCE
experiment), where the band at 2132 cm-1 represents the
formation of CO during fragmentation (verified with authentic
CO). The time dependence of CO formation at 2132 cm-1 is
depicted in Figure 1, where analysis of the principal growth curve
gives k ) 2.9 × 105 s-1 for CO formation, which we equate with
kfrag. In MeCN (νmaxCO ) 2140 cm-1) very similar results are
obtained, with kfrag ) 4.4 × 105 s-1. These directly observed
values (Table 1) are in reasonable agreement with the indirect
LFP-UV (pyridine ylide) results. To avoid overinterpretation of
our data, we do not attempt to analyze small differences between
kfrag values determined by our three different monitoring methods.
In Figure 1, we note the rapid formation and decay of a second
transient immediately after the laser pulse, a feature we attribute
to (unstable) benzyloxychlorodiazomethane (4), formed by pho-
toisomerization of diazirine 3. Related diazirine to diazo isomer-
izations are known,15 and our assignment is supported by a
B3LYP/6-31G* calculation (gas phase, Gaussian 98, λ ) 1)16
which predicts the IR diazo band of 4 to fall at 2141.8 cm-1; that
is, making likely its overlap with CO.
† Rutgers University.
‡ Johns Hopkins University.
(1) (a) Hine, J.; Pollitzer, E. L.; Wagner, H. J. Am. Chem. Soc. 1953, 75,
5607. (b) Skell, P. S.; Starer, I. J. Am. Chem. Soc. 1959, 81, 4117. (c) Smith,
N. P.; Stevens, I. D. R. J. Chem. Soc., Perkin Trans. 2 1979, 213. (d) Smith,
N. P.; Stevens, I. D. R. J. Chem. Soc., Perkin Trans. 2 1979, 1298. (e) Moss,
R. A.; Wilk, B. K.; Hadel, L. M. Tetrahedron Lett. 1987, 28, 1969.
(2) Moss, R. A. Acc. Chem. Res. 1999, 32, 969.
(3) (a) Tabushi, I.; Yoshida, Z-i.; Takahashi, N. J. Am. Chem. Soc. 1971,
93, 1820. (b) Likhotvorik, I. R.; Jones, M., Jr.; Yurchenko, A. G.; Krasutsky,
P. Tetrahedron Lett. 1989, 30, 5089. (c) Moss, R. A.; Ho, G. J.; Wilk, B. K.
Tetrahedron Lett. 1989, 30, 2473.
(4) Moss, R. A.; Johnson, L. A.; Merrer, D. C.; Lee, G. E., Jr. J. Am. Chem.
Soc. 1999, 121, 5940.
(5) Moss, R. A.; Ge, C.-S.; Maksimovic, L. J. Am. Chem. Soc. 1996, 118,
9792. The present data are considered more accurate than the previous rate
constants.
(6) (a) Jackson, J. E.; Soundararajan, N.; Platz, M. S.; Liu, M. T. H. J.
Am. Chem. Soc. 1988, 110, 5595. (b) Platz, M. S.; Modarelli, D. A.; Morgan,
S.; White, W. R.; Mullins, M.; Celebi, S.; Toscano, J. P. Prog. React. Kinet.
1994, 19, 93.
Photolysis of 3-(1-adamantylmethoxy)-3-chlorodiazirine (5) in
MeCN gives mainly the fragmentation products homoadamantyl
chloride (6, 62%) and the corresponding N-homoadamantylacet-
amide (11%).5 Again, we formulate the reaction as the fragmenta-
tion of ROCCl (R ) 1-AdCH2), for which LFP-UV (pyridine)
(7) ROCCl are ambiphilic carbenes which react “slowly” with pyridine,8
thus requiring high [pyridine] to compete with fragmentation.
(8) Ge, C. S.; Jang, E. G.; Jefferson, E. A.; Liu, W.; Moss, R. A.;
Wlostowska, J.; Xue, S. Chem. Commun. 1994, 1479.
(9) Significant solvent effects on the fragmentation of several ROCCl have
been observed and will be reported in due course: Johnson, L. A.; Moss, R.
A., unpublished research.
(12) (a) Pezacki, J. P.; Shukla, D.; Lusztyk, J.; Warkentin, J. J. Am. Chem.
Soc. 1999, 121, 6589. (b) See also: Steenkin, S.; Ashokkumar, M.;
Maruthamuthu, P.; McClelland, R. A. J. Am. Chem. Soc. 1998, 120, 11925.
(13) Moss, R. A.; Kim, H.-R. Tetrahedron Lett. 1990, 31, 4715.
(14) For computational studies, see Yan, S.; Sauers, R. R.; Moss, R. A.
Organic Lett. 1999, 1, 1603.
(15) (a) Bonneau, R.; Liu, M. T. H. J. Am. Chem. Soc. 1996, 118, 7229.
(b) Nigam, M.; Platz, M. S.; Showalter, B. M.; Toscano, J. P.; Johnson, R.;
Abbot, S. C.; Kirchhoff, M. M. J. Am. Chem. Soc. 1998, 120, 8055. (c) Moss,
R. A.; Chang, M. J. Tetrahedron Lett. 1981, 22, 3749. (d) Bayley, H.; Knowles,
J. R. Biochemistry, 1978, 17, 3420.
(10) We used the method of Hamaguchi, et al.: Iwata, K.; Hamaguchi, H.
Appl. Spectrosc. 1990, 44, 1431. Yuzawa, T.; Kato, C.; George, M. W.;
Hamaguchi, H. Appl. Spectrosc. 1994, 48, 684. For a description of our
instrumentation and methodology, see: Wang, Y.; Yuzawa, T.; Hamaguchi,
H.; Toscano, J. P. J. Am. Chem. Soc. 1999, 121, 2875.
(11) For low-temperature matrix photochemistry of MeOCCl and PhOCCl,
see: Kesselmayer, M. A.; Sheridan, R. S. J. Am. Chem. Soc. 1986, 108, 99-
107 and 844-845.
10.1021/ja002611x CCC: $19.00 © 2000 American Chemical Society
Published on Web 10/26/2000