J IRAN CHEM SOC
15. K. Pfister, C.A. Robinson, A.C. Shabica, M. Tishler, J. Am.
Chem. Soc. 70, 2297 (1948)
16. Y. Kamochi, T. Kudo, Tetrahedron Lett. 32, 3511 (1991)
17. H.C. Brown, P.M. Weissman, N.M. Yoon, J. Am. Chem. Soc. 88,
1458 (1966)
products and reaction monitoring over silica gel 60 F254
aluminum sheet. All products are known and were char-
acterized by their H NMR and IR spectra followed by a
1
comparison with the authentic data in literature [61–65].
18. D.R. Smith, M. Maienthal, J. Tipton, J. Org. Chem. 17, 294
(1952)
19. S. Dev, Proc. Indian Acad. Sci. 93, 1015 (1984)
20. D. Carr, B. Iddon, H. Suschitzky, R.T. Parfitt, J. Chem. Soc. Per-
kin Trans. I, 2374 (1980)
A typical procedure for solvent‑free reduction
of benzaldehyde oxime to benzylamine
with NaBH3CN/ZrCl4/nano Fe3O4 system
21. K. Kotera, K. Kitahonoki, Org. Synth. 48, 20 (1968)
22. S.R. Landor, O.O. Sonola, A.R. Tatchell, J. Chem. Soc. Perkin
Trans. I, 1294 (1974)
A mixture of benzaldehyde oxime (0.121 g, 1 mmol)
and nano Fe3O4 (0.046 g, 0.2 mmol) (nano particle size
≈70 nm) was ground in a porcelain mortar. ZrCl4 (0.233 g,
1 mmol) was then added and grinding the mixture was con-
tinued for a moment at room temperature. The mortar was
heated in an oil bath until the temperature of reaction mix-
ture reaches 75–80 °C. NaBH3CN (0.314 g, 5 mmol) was
then added portion wisely and the mixture was ground for
15 min at 75–80 °C. After completion of the reaction, H2O
(5 mL) was added and the mixture was stirred for 5 min.
The mixture was extracted with EtOAc (2 × 5 mL) and
then dried over anhydrous Na2SO4. Evaporation of the
solvent affords the pure liquid benzylamine in 93 % yield
23. S. Sasatani, T. Miyazaki, K. Maruoka, H. Yamamoto, Tetrahedron
Lett. 24, 4711 (1983)
24. K. Abiraj, D.C. Gowda, J. Chem. Res. 332 (2003)
25. K. Abiraj, D.C. Gowda, Synth. Commun. 34, 599 (2004)
26. T.D. Nixon, M.K. Whittlesey, J.M.J. Williams, Tetrahedron Lett.
52, 6652 (2011)
27. H. Feuer, D.M. Braunstein, J. Org. Chem. 34, 1817 (1969)
28. J.M. Lalancette, J.R. Brindle, Can. J. Chem. 48, 735 (1970)
29. B.P. Bandgar, S.M. Nikat, P.P. Wadgaonkar, Synth. Commun. 25,
863 (1995)
30. B. Zeynizadeh, K. Zahmatkesh, J. Chin. Chem. Soc. 52, 109
(2005)
31. K.H. Bell, Aust. J. Chem. 23, 1415 (1970)
32. G.W. Gribble, R.W. Leiby, M.N. Sheehan, Synthesis 856 (1977)
33. G.W. Gribble, C.F. Nutaitis, Org. Prep. Proced. Int. 17, 317
(1985)
34. G.W. Gribble, Chem. Soc. Rev. 27, 395 (1998)
35. H.S.P. Rao, B. Bharathi, Indian J. Chem. 41B, 1072 (2002)
36. H. Spreitzer, G. Buchbauer, C. Püringer, Tetrahedron 45, 6999
(1989)
37. C. Hoffman, R.S. Tanke, M.J. Miller, J. Org. Chem. 54, 3750
(1989)
1
(0.1 g, Table 2, entry 1). H NMR (CDCl3, 300 MHz): δ
7.25–7.33 (m, 5H), 3.83 (s, 2H), 2.04 (s, 2H). 13C NMR
(CDCl3, 75.5 MHz): δ 140.06, 128.56, 128.41, 128.20,
127.65, 127.00, 53.05. FT-IR (KBr, υ cm−1): 3,368, 3,292,
3,061, 3,026, 2,920, 2,858, 1,605, 1,585, 1,511, 1,494,
1,452, 1,246, 1,026, 866, 736, 698.
38. J.P. Leeds, H.A. Kirst, Synth. Commun. 18, 777 (1988)
39. S. Kano, Y. Tanaka, E. Sugino, S. Hibino, Synthesis 695 (1980)
40. J. Ipaktschi, Chem. Ber. 117, 856 (1984)
41. J. Herscovici, M.-J. Egron, K. Antonakis, J. Chem. Soc. Perkin
Trans. I, 1219 (1988)
Acknowledgments The financial support of this work was grate-
fully acknowledged by the Research Council of Urmia University.
42. S. Itsuno, Y. Sakurai, K. Ito, Synthesis 995 (1988)
43. B. Zeynizadeh, M. Kouhkan, Bull. Korean Chem. Soc. 32, 3448
(2011)
References
44. Y. Yang, S. Liu, J. Li, X. Tian, X. Zhen, J. Han, Synth. Commun.
1. A. Ricci, Modern amination methods (Wiley-VCH, Weinheim,
2000)
42, 2540 (2012)
45. A. Kascheres, R.A.F. Rodrigues. Tetrahedron 52, 12919 (1996)
46. Q.-C. Zhu, R.O. Hutchins, M.K. Hutchins, Org. Prep. Proced. Int.
26, 193 (1994)
2. S.A. Lawrence, Amines: synthesis, properties and applications
(Cambridge University Press, UK, 2004)
3. T.C. Nugent, Chiral amine synthesis: methods, developments and
applications (Wiley-VCH, Weinheim, 2010)
47. C.F. Lane, Synthesis 135, (1975)
48. R.O. Hutchins, I.M. Taffer, W. Burgoyne, J. Org. Chem. 46, 5214
(1981)
49. S. Kim, C.H. Oh, J.S. KO, K.H. Ahn, Y.J. Kim. J. Org. Chem. 50,
1927 (1985)
50. O. Han, Y. Shih, L.-D. Liu, H.-W. Liu, J. Org. Chem. 53, 2105
(1988)
51. L.A. Paquette, D. Crich, P.L. Fuchs, G.A. Molander, Encyclope‑
dia of reagents for organic synthesis, 2nd edn. (Wiley, Weinheim,
2009)
52. R.F. Borch, M.D. Bernstein, H.D. Durst, J. Am. Chem. Soc. 93,
2897 (1971)
53. R.O. Hutchins, D. Kandasamy, J. Org. Chem. 40, 2530 (1975)
54. M. Kouhkan, B. Zeynizadeh, Bull. Korean Chem. Soc. 32, 3323
(2011)
55. M. Kouhkan, B. Zeynizadeh, Bull. Korean Chem. Soc. 31, 2961
(2010)
56. R.B. Nasir Baig, R.S. Varma, Chem. Commun. 49, 752 (2013)
4. T. Farooqui, A.A. Farooqui, Biogenic amines: pharmacological,
neurochemical and molecular aspects in the CNS (Nova Science
Publisher, New York, 2010)
5. J. Hagen, Industrial catalysis: a practical approach, 2nd edn.
(Wiley-VCH, Weinheim, 2006)
6. H.J. Arpe, Industrial organic chemistry, 5th edn. (Wiley-VCH,
Weinheim, 2010)
7. H. Adkins, H.R. Billica, J. Am. Chem. Soc. 70, 695 (1948)
8. M. Freifelder, W.D. Smart, G.R. Stone, J. Org. Chem. 27, 2209
(1962)
9. C.F. Winans, H. Adkins, J. Am. Chem. Soc. 54, 306 (1932)
10. P. Anziani, R. Cornubert, Bull. Soc. Chim. Fr. 857 (1948)
11. F.E. King, J.A. Barltrop, R.J. Walley, J. Chem. Soc. 277 (1945)
12. H. Adkins, E.W. Reeve, J. Am. Chem. Soc. 60, 1328 (1938)
13. N.F. Alberstron, B.F. Tullar, J.A. King, B.B. Fishburn, S. Archer,
J. Am. Chem. Soc. 70, 1150 (1948)
14. T. Ishimaru, Nippon Kagaku Zusshi 81, 643 (1960)
1 3