COLLOID AND NANOSIZED CATALYSTS IN ORGANIC SYNTHESIS: XVI.
2281
Catal. (A), 2005, vol. 294, p. 208. doi 10.1016/
j.apcata.2005.07.036
N-Pentylidenepentylamine (2d). Mass spectrum,
m/e (Irel, %): 156.0 (100) [M + 1], 98.1 (94), 41.0 (29),
42.0 (25), 56.0 (24).
4. Medina, F., Dutartre, R., Tichit, D., Coq, B., Dung, N.T.,
Salagre, P., and Sueiras, J.E., J. Mol. Catal., 1997, vol. 119,
nos. 1–3, p. 201. doi 10.1016/S1381-1169(96)00484-0
5. Huang, Y. and Sachtler, W.M.H., Appl. Catal. (A),
1999, vol. 182, no. 2, p. 365. doi 10.1016/S0926-860X
(99)00035-6
Di-n-pentylamine (3d). Mass spectrum, m/e (Irel,
%): 158.0 (36) [M + 1], 156.8 (2) [M], 44.0 (100),
100.0 (47), 43.0 (12), 41.0 (9).
Tri-n-pentylamine (5d). Mass spectrum, m/e (Irel,
%): 228.2 (14) [M + 1], 170.0 (100), 114.0 (55), 58.0
(40), 171.0 (12).
6. Chen, H., Xue, M., Hu, Sh., and Shen, J., Chem. Eng. J.,
2012, vol. 181, p. 677. doi 10.1016/j.cej.2011.12.056
7. Hao, Y., Wang, X., Perret, N., Cardenas-Lizana, F., and
Keane, M.A., Catal. Struct. React., 2015, vol. 1, p. 4.
doi 10.1179/2055075814Y.0000000002
8. Nobuhiro, I., Masayoshi, Y., and Masahiko, A., Phys.
Chem. Chem. Phys., 2002, vol. 4, p. 5414. doi 10.1039/
B206916B
9. Carrion, M.C., Manzano, B.R., Jalon, F.A., Fuentes-
Perujo, I., Maireles-Torres, P., Rodrıguez-Castellon, E.,
and Jimenez-Lopez, A., Appl. Catal. (A), 2005, vol. 288,
p. 34. doi 10.1016/j.apcata.2005.03.042
10. Mokhov, V.M., Popov, Yu.V., and Shcherbakova, K.V.,
Russ. J. Gen. Chem., 2016, vol. 86, no. 2, p. 273. doi
10.1134/S1070363216020110
11. Popov, Yu.V., Mokhov, V.M., and Shcherbakova, K.V.,
Izv. VolgGTU, Ser. Khim. Khim. Teknol. Monom.
Polimer. Mater., 2016, vol. 183, no. 4, p. 61.
12. Mukhlenov, I.P., Dobkina, E.I., Deryuzhkina, V.I., and
Soroko, V.E., Tekhnologiya katalizatorov (Catalyst
Technology), Leningrad: Khimiya, 1979.
13. Nieto-Marquez, A., Toledano, D., Sanchez, P., Romero, A.,
and Valverde, J.L., J. Catal., 2010, vol. 269, no. 1,
p. 242. doi 10.1016/j.jcat.2009.11.014
14. Braos-Garcıa, P., Maireles-Torres, P., Rodrıguez-
Castellón, E., and Jiménez-López, A., J. Catal., 2001,
vol. 168, nos. 1–2, p. 279. doi 10.1016/S1381-1169(00)
00544-6
Hydrogenation of benzonitrile 1e. a. Hydrogen
feeding rate 0.5 L h–1 gcat–1, nitrile 1e feeding rate
0.9 mL h–1 gcat–1, 260°С. Conversion of nitrile 1e 91%.
Yield: 17% dibenzylamine 3e, 7% of tribenzylamine
5e, and 16% of benzylamine, 27% of toluene, and 23%
of benzene.
Dibenzylamine (3e). Mass spectrum, m/e (Irel, %):
198.0 (2) [M + 1], 197.0 (11) [M], 91.0 (100), 106.0
(59), 65.0 (24), 92.0 (22), 51.0 (12).
Tribenzylamine (5e). Mass spectrum, m/e (Irel, %):
288.0 (4) [M + 1], 287.0 (18) [M], 91.0 (100), 210.0
(24), 196.0 (20), 65.0 (18), 92.0 (12).
b. Hydrogen feeding rate 0.5 L h–1 gcat–1, nitrile 1e
feeding rate 0.9 mL h–1 gcat–1, 180°С. Conversion of
nitrile 1e 64.8%. Yield: 3% of dibenzylamine 3e, 57%
of tribenzylamine 5e, and 4% of benzylamine.
c. Hydrogen feeding rate 2 L h–1 gcat–1, nitrile 1e
feeding rate 0.9 mL h–1 gcat–1, 180°С. Conversion of
nitrile 1e 91%. Yield: 5% of dibenzylamine 3e, 65% of
tribenzylamine 5e, and 20% of benzylamine.
REFERENCES
15. McCarty, J.G. and Wise, H., J. Catal., 1979, vol. 57,
1. Mokhov, V.M., Popov, Yu.V., and Shcherbakova, K.V.,
Russ. J. Gen. Chem., 2016, vol. 86, no. 4, p. 2589. doi
10.1134/S1070363216120033
2. Gomez, S., Peters, J.A., and Maschmeyer, T., Adv.
Synth. Catal., 2002, vol. 344, no. 10, p. 1037.
doi 10.1002/1615-4169
p. 406. doi 10.1016/0021-9517(79)90007-1
16. Kock, J.H.M., Bokx, P.K., Boellaard, E., Klop, W., and
Geus, J.W., J. Catal., 1985, vol. 96, p. 468. doi
10.1016/0021-9517(85)90314-8
17. Lawrence, S.A., Amines: Synthesis, Properties, and
Applications, Cambridge: Cambridge University Press,
2004, vol. 1, p. 62.
3. Gluhoi, A.C., Marginean, P., and Stanescu, U., Appl.
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 10 2017