2–
Footnotes and References
[Mo6O19
]
+
Ph3P NCH2Ph
* E-mail: eam@ksu.edu
Ph3P
O
–
† p-CH3C6H4NNPPh3 (Epa = 0.74 V vs. SCE) is easier to oxidize than is
PhCH2NNPPh3 (Epa 1.06 V vs. SCE), yet the former reacts with
[Mo6O19
22 to give only metathesis without electron transfer.10a
=
[Mo5O18(Mo
N
CH2Ph)]2–
]
1
1 R. K Grasselli, in Heterogenous Catalysis, ed. B. L. Shapiro, Texas
A&M University Press, College Station, TX, 1984, p. 182.
2 J. D. Burrington, C. T. Kartisek and R. K. Grasselli, J. Org. Chem.,
1981, 46, 1877; W. Martin and J. H. Lunsford, J. Am. Chem. Soc., 1981,
103, 3728.
(H+ / 2 e–) transfer
hydrolysis
)]2–
CHPh
2–
[Mo5O17(OH)( Mo
N
[Mo6O19
]
+ PhCH2NH2
2
3 J. Haber and B. Grzybowska, J. Catal., 1973, 28, 489; B. Grzybowska,
J. Haber and J. Janas, J. Catal., 1977, 49, 150; J. D. Burrington and R.
K. Grasselli, J. Catal., 1979, 59, 79; J. D. Burrington, C. T. Kartisek and
R. K. Grasselli, J. Catal. 1983, 81, 489.
PhCH NCH2Ph
PhC
N
4 R. K. Grasselli and J. D. Burrington, Ind. Eng. Chem. Prod. Res. Dev.,
1984, 23, 394 and references therein.
Scheme 2 Proposed decomposition pathways for 1
5 D. M.-T. Chan and W. A. Nugent, Inorg. Chem., 1985, 24, 1422.
6 E. A. Maatta and Y. Du, J. Am. Chem. Soc., 1988, 110, 8249.
7 J. Belgacem, J. Kress and J. A. Osborn, J. Mol. Catal., 1994, 86, 267.
8 H. R. Allcock, E. C. Bissell and E. T. Shawl, Inorg. Chem., 1973, 12,
2963.
and its hydrolysis (to produce benzyl amine and hexamo-
lybdate) will initiate the reaction sequence leading to
PhCHNNCH2Ph (Scheme 1).
9 L. Kihlborg, Ark. Kemi, 1963, 21, 357.
10 (a) Y. Du, A. L. Rheingold and E. A. Maatta, J. Am. Chem. Soc., 1992,
114, 345; (b) J. B. Strong, R. Ostrander, A. L. Rheingold and E. A.
Maatta, J. Am. Chem. Soc., 1994, 116, 3601; (c) R. J. Errington, C. Lax,
D. G. Richards, W. Clegg and K. A. Fraser, in Polyoxometalates: From
Platonic Solids to Anti-Retroviral Activity, ed. M. T. Pope and A.
Mu¨ller, Kluwer, Dordrecht, 1994, p. 105; (d) A. Proust, R. Thouvenot,
M. Chaussade, F. Robert and P. Gouzerh, Inorg. Chim. Acta, 1994, 224,
81; (e) W. Clegg, R. J. Errington, K. A. Fraser, S. A. Holmes and A.
Scha¨fer, J. Chem. Soc., Chem. Commun., 1995, 455; (f) J. L. Stark, A.
L. Rheingold and E. A. Maatta, J. Chem. Soc., Chem. Commun., 1995,
1165; (g) J. L. Stark, V. G. Young, Jr. and E. A. Maatta, Angew. Chem.,
Int. Ed. Engl., 1995, 34, 2547.
11 M. Che, M. Fournier and J. P. Launay, J. Chem. Phys., 1979, 71,
1954.
12 R. Neumann and M. Lissel, J. Org. Chem., 1991, 56, 5707; K.
Nakayama, M. Hamamoto, Y. Nishiyama, and Y. Ishii, Chem. Lett.,
1993, 1699.
The conversion {[Ph–CH2–N]22 ? Ph–C·N} requires the
formal export of 2 H+ and 4 e2. Precedent suggests that the
a-CH2 hydrogens within 1 should be acidic6,13,14 while the oxo
sites within 1 will display enhanced basicity10b,g as a result of
the effective electron donation provided by the benzylimido
ligand. These combined attributes suggest that the decomposi-
tion of 1 to produce benzonitrile is triggered by initial H+
migration, probably in a pairwise10g fashion; an accompanying
2 e2 reduction of its hexamolybdate cage will produce a
reduced benzylideneamido dianion 2 (Scheme 2).6,13 While
further reduction of 2 is improbable, several species in the
reaction solution should be capable of oxidizing 2 {the most
potent of which is [Mo6O19]22}. Such an oxidation would
increase the acidity of the remaining methine hydrogen atom,
facilitating a second H+–2 e2 transfer process, allowing the
release of benzonitrile. Efforts are underway to isolate com-
plexes analogous to 1 and 2.
13 Y. Du, A. L. Rheingold and E. A. Maatta, J. Chem. Soc., Chem.
Commun., 1994, 2163.
14 Y. Du, Ph.D. Thesis, Kansas State University 1992.
We thank the Office of Basic Energy Sciences, Department
of Energy (USA) for support of this work.
Received in Bloomington, IN, USA, 30th May 1997; 7/03790B
1708
Chem. Commun., 1997