LETTER
Conversions of Aldehydes into Nitriles and Ketones into Amides
627
ture was taken in a test tube, placed in an alumina bath inside a
microwave oven (BPL, BMO, 700T, 466 watt) and irradiated for 1
min. This was removed from the oven, cooled and shaken with
EtOAc (10 mL). After filtration the filtrate was concentrated and the
residue was purified by column chromatography over silica gel us-
ing EtOAc as eluent to afford 3,4,5-trimethoxybenzonitrile (185
mg, 96%).
Acknowledgement
The authors thank CSIR, New Delhi for financial assistance.
References
(1) (a) Part 13 in the series, „Studies on Novel Synthetic
Methodologies“, for part 12 see: Ravindranath, N.; Ramesh,
C.; Das, B. Synlett 2002, submitted. (b) IICT
Communication No. 4325.
Using the recovered zeolite a separate experiment with the similar
quantities of 3,4,5-trimethoxybenzaldehyde and NH2OH HCl was
carried out under the similar conditions. The product, 3,4,5-tri-
methoxybenzonitrile was obtained in similar yield.
(2) (a) Diana, G. D.; Cutcliffe, D.; Volkots, D. L.; Mallamo, J.
P.; Bailey, T. R.; Vescio, N.; Oglesley, R. C.; Nitz, T. J.;
Wetzel, J.; Girandu, V.; Pevear, D. C.; Dutko, F. J. J. Med.
Chem. 1993, 36, 3240. (b) Chihiro, M.; Nagamoto, H.;
Takemura, I.; Kitano, K.; Komatsu, H.; Sekiguchi, K.;
Tabusa, F.; Mori, T.; Tominnaga, M.; Yabuuchi, Y. J. Med.
Chem. 1995, 38, 353. (c) Fabiani, M. E. Drug News
Perspect. 1999, 12, 207. (d) Khanna, I. K.; Weier, R. M.;
Yu, Y.; Xu, X. D.; Koszyk, F. J.; Callins, P. W.; Kobaldt, C.
M.; Veenhuizen, A. W.; Perkins, W. E.; Casler, J. J.;
Masferrer, J. L.; Zhung, Y. Y.; Gregory, S. A.; Seibert, K.;
Isakson, P. C. J. Med. Chem. 1997, 40, 1634.
2) Conventional Method: 3,4,5-Trimethoxybenzaldehyde (588
mg, 3 mmol) and NH2OH HCl (365 mg, 4 mmol) were taken in tol-
uene (25 mL). HY-zeolite (60 mg) was added. The mixture was re-
fluxed for 6 h under N2 atmosphere and filtered. The concentrated
filtrate was subjected to column chromatography over silica gel us-
ing EtOAc as eluent to give 3,4,5-trimethoxybenzonitrile (457 mg,
79%).
The recovered zeolite was again used to get the product in similar
yield.
B) Conversion of Ketones into Amides
(3) (a) Cohen, M. A.; Sawden, J.; Turner, N. J. Tetrahedron Lett.
1990, 31, 7223. (b) Yamada, H. Chimia 1993, 47, 69.
(c) Crossby, J.; Moiller, J.; Parratt, J. S.; Turner, N. J. J.
Chem. Soc., Perkin Trans. 1 1994, 1679. (d) Luo, F.-T.;
Jeevanandam, A. Tetrahedron Lett. 1998, 39, 9455.
(4) March, J. Advanced Organic Chemistry; John Wiley and
Sons: New York, 1992, 1038; and references cited therein.
(5) Wang, E. C.; Lin, G.-J. Tetrahedron Lett. 1998, 36, 4047;
and references cited therein.
1) Microwave Irradiation: Benzophenone (182 mg, 1 mmol) and
NH2OH HCl (104 mg, 1.5 mmol) were mixed with HY-zeolite (25
mg). The mixture was taken in a test tube, kept in an alumina bath
inside the microwave oven and irradiated for 2 min. The mixture
was cooled, shaken with EtOAc (10 mL) and filtered. The filtrate
was purified over silica gel using hexane–EtOAc (1:1) as eluent to
afford benzanilide (187 mg, 95%).
The recovered zeolite when reused to conduct the conversion of
benzophenone into benzanilide under similar reaction conditions
the yield of the product was same.
(6) (a) Feng, J.-C.; Lin, G.; Dia, L.; Bian, N.-S. Synth. Commun.
1998, 28, 3765. (b) Bose, D. S.; Narsaiah, A. V.
Tetrahedron Lett. 1998, 39, 6533. (c) Das, B.;
2) Conventional Method: Benzophenone (546 mg, 3 mmol) and
NH2OH HCl (312 mg, 4.5 mmol) were taken in toluene (25 mL).
HY-zeolite (60 mg) was added. The mixture was refluxed under N2
atmosphere for 10 h. After filtration the filtrate was purified by col-
umn chromatography over silica gel using hexane–EtOAc (1:1) as
eluent to give benzanilide, 384 mg, 65%).
Madhusudhan, P.; Venkataiah, B. Synlett 1999, 1569.
(d) Das, B.; Ramesh, C.; Madhusudhan, P. Synlett 2000,
1599.
(7) Sosnovsky, G.; Krogh, J. A.; Umhoefer, S. G. Synthesis
1979, 722.
(8) Webb, K. S.; Levy, D. Tetrahedron Lett. 1995, 36, 5117.
(9) Marouka, K.; Yamamoto, H. In Comprehensive Organic
Synthesis, Vol. 6; Trost, B. M., Ed.; Pergamon Press:
Oxford, 1991, 763.
The recovered zeolite was reused to get the similar yield of the prod-
uct.
(10) (a) Olah, G. A.; Fung, A. P. Synthesis 1979, 537.
(b) Gawly, R. E. Org. React. 1988, 35, 1.
(11) Meshram, H. M. Synth. Commun. 1990, 20, 3253; and
references cited therein.
Spectroscopic Data of some Nitriles and Amides are given be-
low:
3,4,5-Trimethoxybenzonitrile: IR (KBr): 2227, 1592, 1483, 1464,
1134 cm–1; 1H NMR (CDCl3): = 6.89 (2 H, s, H-2, H-6), 3.86 (3
H, s, OMe), 3.82 (6 H, m, 2 OMe); MS: m/z (%) = 193 (100) [M+],
178 (62), 150 (46), 132 (24).
(12) (a) Novotny, A. U.S. Patent 2569114, 1951; Chem. Abstr.
1952, 46, 5078. (b) Novotny, A. U.S. Patent 2579851, 1951;
Chem. Abstr. 1952, 46, 6668. (c) Barnett, C.; Cohn, I. M.;
Lincoln, J. U.S. Patent 2754298, 1956; Chem. Abstr. 1957,
51, 2853. (d) Delgado, F.; Cano, A. C.; Garcia, O.;
Alvarado, J.; Velasco, L.; Alvarez, C.; Rudler, H. Synth.
Commun. 1992, 22, 2125. (e) Lavrent, A.; Jacquault, P.; Di
Martino, J.-L.; Hamelin, J. J. Chem. Soc., Chem. Commun.
1995, 1101. (f) Das, B.; Ravindranath, N.; Venkataiah, B.;
Madhusudhan, P. J. Chem. Res., Synop. 2000, 482.
1
Octanenitrile: IR (KBr): 2232, 1446, 1362, 1224 cm–1; H NMR
(CDCl3): = 2.36 (2 H, t, J = 7.0 Hz, H2-2), 1.76–1.57 (2 H, m, H2-
3), 1.43–1.12 (8 H, m, H2-4 to H2-7), 0.94 (3 H, t, J = 7.0 Hz, Me);
MS: m/z (%) = 125 (25) [M+], 79 (6), 51 (4).
1
Benzanilide: IR (KBr): 3362, 1658, 1630, 1494, 1408 cm–1; H
NMR (CD3OD): = 8.04 (1 H, brs, -NH-), 7.84–7.12 (10 H, m, Ar-
H); MS: m/z (%) = 197 (32) [M+], 105 (100), 77 (48).
1
Caprolactum: IR (KBr): 3477, 1643, 1592, 1439, 1366 cm–1; H
NMR (CDCl3): = 3.21 (1 H, m, one of H2-6), 2.44–2.39 (2 H, m,
one of H2-2, one of H2-6), 2.19 (1 H, m, one of H2-2), 1.78–1.58 (6
H, m, 3 -CH2); MS: m/z (%) = 113 (95), 98 (24), 80 (26), 72 (26).
Synlett 2002, No. 4, 625–627 ISSN 0936-5214 © Thieme Stuttgart · New York