Journal of the American Chemical Society
Page 4 of 6
dy, B.; G. F. Shoair, A.; Suriaatmaja, M.; J. P. White, A.; J. Williams,
higher activity compared to other known systems. The poor
yield obtained for a related N-methylated pyrazole complex
confirms the vital role of the protic ligand in the dehydro-
genation reaction. Kinetic isotope studies suggest that N−H
bond cleavage during the hydrogen elimination has a direct
influence on the overall rate. DFT calculations reveal intri-
cate hydride and proton transfer aided by the pyrazolato β-
N. Insights gained in this work should pave the way to devel-
op new generation dehydrogenation catalysts based on pro-
ton responsive pyrazole ligands.
D. J. Chem. Soc., Dalton Trans. 1998, 2819–2826. (g) Yamazaki, S.;
Yamazaki, Y. Bull. Chem. Soc. Jpn. 1990, 63, 301–303. (h) Kim, J.;
Stahl, S. S. ACS Catal. 2013, 3, 1652–1656. (i) Zhang, Y.; Xu, K.; Chen,
X.; Hu, T.; Yu, Y.; Zhang, J.; Huang, J. J. Catal. Commun. 2010, 11, 951–
954. (j) Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2003, 42,
1480–1483. (k) Mori, K.; Yamaguchi, K.; Mizugaki, T.; Ebitani, K.;
Kaneda, K. Chem. Commun. 2001, 461–462. (l) Bailey, A. J.; James, B.
R. Chem. Commun. 1996, 2343–2344. (m) Tang, R.; Diamond, S. E.;
Neary, N.; Mares, F. J. Chem. Soc. Chem. Commun. 1978, 562.
(4) Bernskoetter, W. H.; Brookhart, M. Organometallics 2008, 27,
2036–2045.
1
2
3
4
5
6
7
8
9
(5) Yoshida, T.; Okano, T.; Otsuka, S. J. Chem. Soc. Chem. Commun.
1979, 870–871.
(6) (a) Wang, Z.; Belli, J.; Jensen, C. M. Faraday Discuss. 2011, 151,
297–305. (b) Gu, X.-Q.; Chen, W.; Morales-Morales, D.; Jensen, C. M.
J. Mol. Catal. A: Chem. 2002, 189, 119–124.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Detailed experimental procedures, catalysis reactions, kinetic
plots, supporting schemes and figures, available free of
(7) (a) Reguillo, R.; Grellier, M.; Vautravers, N.; Vendier, L.; Sabo−
Etienne, S. J. Am. Chem. Soc. 2010, 132, 7854–7855. (b) Jung, C. W.;
Fellmann, J. D.; Garrou, P. E. Organometallics 1983, 2, 1042–1044. (c)
He, L. −P.; Chen, T.; Gong, D.; Lai, Z.; Huang, K.-W. Organometallics
2012, 31, 5208-5211. (d) Hollmann, D.; Baehn, S.; Tillack, A.; Beller, M.
Angew. Chem., Int. Ed. 2007, 46, 8291–8294. (e) Hollmann, D.; Baehn,
S.; Tillack, A.; Beller, M. Chem. Commun. 2008, 3199–3201. (f) Saidi,
O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams, J. M. J.
Angew. Chem., Int. Ed. 2009, 48, 7375–7358. (g) Stubbs, J. M.; Haz-
lehurst, R. J.; Boyle, P. D.; Blacquiere, J. M. Organometallics 2017, 36,
1692–1698. (h) Ventura-Espinosa, D.; Marzá-Beltrán, A.; Mata, J. A.
Chem. Eur. J. 2016, 22, 17758–17766. (i) Valencia, M.; Pereira, A.;
Müller-Bunz, H.; Belderrain, T. R.; Perez, P. J.; Albrecht, M. Chem.
Eur. J. 2017, 23, 8901–8911.
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work is financially supported by the DST and DAE,
India. I.D. and S.Y. thank CSIR, India and S.D. thanks IIT
Kanpur for fellowships. This work is dedicated to Professor
Vadapalli Chandrasekhar on the occasion of his 60th birth-
day.
(8) (a) Tseng, K. −N. T.; Rizzi, A. M.; Szymczak, N. K. J. Am. Chem.
Soc. 2013, 135, 16352–16355. (b) Tseng, K. −N. T.; Szymczak, N. K.
Synlett 2014, 25, 2385–2389.
(9) Hale, L. V. A.; Malakar, T.; Tseng, K. −N. T.; Zimmerman, P. M.;
Paul, A.; Szymczak, N. K. ACS Catal. 2016, 6, 4799–4813.
(10) (a) Musa, S.; Shaposhnikov, I.; Cohen, S.; Gelman, D. Angew.
Chem., Int. Ed. 2011, 50, 3533–3537. (b) Kawahara, R.; Fujita, K.-i.;
Yamaguchi, R. J. Am. Chem. Soc. 2012, 134, 3643. (c) Musa, S.;
Fronton, S.; Vaccaro, L.; Gelman, D. Organometallics 2013, 32, 3069–
3073. (d) Chakraborty, S.; Lagaditis, P. O.; Förster, M.; Bielinski, E.
A.; Hazari, N.; Holthausen, M. C.; Jones, W. D.; Schneider, S. ACS
Catal. 2014, 4, 3994–4003. (e) Gunanathan, C.; Milstein, D. Chem.
Rev. 2014, 114, 12024. (f) Chakraborty, S.; Piszel, P. E.; Brennessel, W.
W.; Jones, W. D. Organometallics 2015, 34, 5203–5206. (g)
Khusnutdinova, J. R., Milstein, D. Angew. Chem., Int. Ed. 2015, 54,
12236. (h) Crabtree, R. H. Chem. Rev. 2017, 117, 9228–9246.
(11) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681-703.
(12) (a) Ikariya, T.; Shibasaki, M. (eds) Bifunctional molecular cataly-
sis. Springer, Berlin, 2011. (b) Gunanathan, C.; Milstein, D. Top. Or-
ganomet. Chem. 2011, 37, 55–84. (c) Gunanathan, C.; Milstein, D. Acc.
Chem. Res. 2011, 44, 588–602. (d) Gunanathan, C.; Milstein, D. Sci-
ence 2013, 341, 1229712.
(13) (a) Araki, K.; Kuwata, S.; Ikariya, T. Organometallics 2008, 27,
2176–2178. (b) Kuwata, S.; Ikariya, T. Chem. Eur. J. 2011, 17, 3542–3556.
(c) Kashiwame, Y.; Kuwata, S.; Ikariya, T. Organometallics 2012, 31,
8444–8455. (d) Umehara, K.; Kuwata, S.; Ikariya, T. J. Am. Chem. Soc.
2013, 135, 6754–6757. (e) Kashiwame, Y.; Kuwata, S.; Ikariya, T. Chem.
Eur. J. 2010, 16, 766–770. (f) Kuwata, S.; Ikariya, T. Chem. Commun.
2014, 50, 14290–14300. (g) Tobisch, S. Chem. Eur. J. 2012, 18, 7248–
7262.
REFERENCES
(1) (a) Fleming, F. F. Nat. Prod. Rep. 1999, 16, 597–606. (b) Fleming,
F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem.
2010, 53, 7902–7917. (c) Pollak, P.; Romeder, G.; Hagedorn, F.;
Gelbke, H. –P. Nitriles. In Ullmann’s Encyclopedia of Industrial
Chemistry; Wiley-VCH: Weinheim, Germany, 2012. (d) Srimani, D.;
Feller, M.; Ben-David, Y.; Milstein, D. Chem. Commun. 2012, 48,
11853–11855. (e) Gunanathan, C.; Hoelscher, M.; Leitner, W. Eur. J.
Inorg. Chem. 2011, 2011, 3381–3386. (f) Herr, R. J. Bioorg. Med. Chem.
2002, 10, 3379–3393.
(2) (a) Grasselli, R. K. Catal. Today 1999, 49, 141–153. (b) Sandmeyer,
T. Ber. Dtsch. Chem. Ges. 1885, 18, 1496–1500. (c) Rosenmund, K. W.;
Struck, E. Ber. Dtsch. Chem. Ges. 1919, 52, 1749–1756. (d) Yamaguchi,
K.; Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Mizuno, N. Angew.
Chem., Int. Ed. 2007, 46, 3922–3925. (e) Ishihara, K.; Furuya, Y.;
Yamamoto, H. Angew. Chem., Int. Ed. 2002, 41, 2983–2986. (f)
Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. Angew. Chem.,
Int. Ed. 2013, 52, 7523–7526. (g) Falk, A.; Goederz, A. –L.; Schmalz, H.
–G. Angew. Chem., Int. Ed. 2013, 52, 1576–1580. (h) Velcicky, J.;
Soicke, A.; Steiner, R.; Schmalz, H. –G. J. Am. Chem. Soc. 2011, 133,
6948–6951. (i) Laulhe, S.; Gori, S. S.; Nantz, M. H. J. Org. Chem. 2012,
77, 9334–9337. (j) Lamani, M.; Prabhu, K. R. Angew. Chem., Int. Ed.
2010, 49, 6622–6625. (k) Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller,
M. Org. Lett. 2009, 11, 2461–2464. (l) Yan, G.; Zhang, Y.; Wang, J. Adv.
Synth. Catal. 2017, 359, 4068–4105.
(14) The addition of Hg(0) (∼ 600 equiv) didn’t affect the production
of p-methylbenzonitrile. See, (a) Crabtree, R. H. Chem. Rev. 2012, 112,
1536–1554. (b) Widegren, J. A.; Finke, R. G. J. Mol. Catal. A: Chem.
2003, 198, 317–341.
(15) (a) Dutta, I.; Sarbajna, A.; Pandey, P.; Rahaman, S. M. W.; Singh,
K.; Bera, J. K. Organometallics 2016, 35, 1505–1513. (b) Kawahara, R.;
Fujita, K. –i.; Yamaguchi, R. J. Am. Chem. Soc. 2012, 134, 3643–3646.
(16) The catalytic reaction was conducted in a flask that was con-
nected to a second flask containing equimolar styrene and a catalytic
amount of RhCl(PPh3)3 in benzene (Scheme S7). Detection of
(3) (a) Murahashi, S. –I.; Imada, Y. Amine Oxidation. In Transition
Metals for Organic Synthesis; Beller, M.; Bolm, C., Eds.; Wiley–VCH:
Weinheim, Germany, 2008; pp 497. (b) Porta, F.; Crotti, C.; Cenini,
S.; Palmisano, G. J. Mol. Catal. 1989, 50, 333–341. (c) Lee, J. B.; Parkin,
C.; Shaw, M. J.; Hampson, N. A.; Macdonald, K. I. Tetrahedron 1973,
29, 751–752. (d) Stojiljković, A.; Andrejević, V.; Mihailovi, M. L. Tet-
rahedron 1967, 23, 721–732. (e) Nicolaou, K. C.; Mathison, C. J. N.
Angew. Chem., Int. Ed. 2005, 44, 5992–5997. (f) P. Griffith, W.; Red-
ACS Paragon Plus Environment