10.1002/anie.201909675
Angewandte Chemie International Edition
COMMUNICATION
Lu, J. Am. Chem. Soc. 2017, 139, 6570–6573; e) H. Kameo, Y.
Hashimoto, H. Nakazawa, Organometallics 2012, 31, 3155–3162.
For reviews dealing with hydrogen transfer between TM and LA, see: a)
G. R. Owen, Chem. Soc. Rev. 2012, 41, 3535–3546; b) G. R. Owen,
Chem. Commun. 2016, 52, 10712–10726; c) A. Maity, T. S. Teets, Chem.
Rev. 2016, 116, 8873–8911.
Acknowledgements
[8]
[9]
This work was supported by Grant-in-Aid for Scientific Research
(C) (No. 18K05151 and 18K05152) of the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan. H.K.
acknowledges the financial support from the Tonen general
sekiyu research/development encouragement & scholarship
foundation. The Centre National de la Recherche Scientifique
(CNRS), the Université Paul Sabatier (UPS) and the Agence
Nationale de la Recherche (ANR-15-CE07-0003) are
acknowledged for financial support of this work.
M. Sircoglou, S. Bontemps, M. Mercy, N. Saffon, M. Takahashi, G.
Bouhadir, L. Maron, D. Bourissou, Angew. Chem. Int. Ed. 2007, 46,
8583–8586; Angew. Chem. 2007, 119, 8737–8740.
[10] See Supporting Information for details.
[11] a) T. Schindler, M. Lux, M. Peters, L. T. Scharf, H. Osseili, L. Maron, M.
E. Tauchert, Organometallics 2015, 34, 1978–1984; b) P. Steinhoff, M.
E. Tauchert, Beilstein J. Org. Chem. 2016, 12, 1573–1576.
[12] The (DPB)Pd(Py) complex was shown to reversibly activate allyl acetate
and Pd(II) borate complexes [(DPB)(OR)]Pd(allyl) were authenticated.
The reaction was amenable to catalysis using amines as coupling
partners, see ref. 11a.
Keywords: Anionic Complexes • Boranes • Catalysis •
Dehalogenation • Deuteration • Palladium
[13] M. Sircoglou, S. Bontemps, M. Mercy, K. Miqueu, S. Ladeira, N. Saffon,
L. Maron, G. Bouhadir, D. Bourissou, Inorg. Chem. 2010, 49, 3983–3990.
[14] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E.
Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 37, 2832–2838.
[15] For a review on 2-BC and 3-BCC coordination, see: D. J. H. Emslie, B.
E. Cowie, K. B. Kolpin, Dalton Trans. 2012, 41, 1101–1117.
[1]
a) I. Kuzu, I. Krummenacher, J. Meyer, F. Armbruster, F. Breher, Dalton
Trans. 2008, 5836–5865; b) F. G. Fontaine, J. Boudreau, M. H. Thibault,
Eur. J. Inorg. Chem. 2008, 5439–5454; c) H. Braunschweig, R. D.
Dewhurst, A. Schneider, Chem. Rev. 2010, 110, 3924–3957; d) A.
Amgoune, D. Bourissou, Chem. Commun. 2011, 47, 859–871; e) H.
Kameo, H. Nakazawa, Chem. Asian J. 2013, 8, 1720–1734; g) J. S.
Jones, F. P. Gabbaï, Acc. Chem. Res. 2016, 49, 857–867.
[16] NBO analysis of
1 shows Pd→B and BCipso→Pd donor-acceptor
interactions (40.4 and 19.6 kcal/mol, respectively) at the second-order
perturbation level.
[2]
For some complexes of ambiphilic ligands displaying unique reactivity,
see: a) A. J. M. Miller, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc.
2010, 132, 3301–3303; b) W.-C. Shih, O. V. Ozerov, J. Am. Chem. Soc.
2017, 139, 17297–17300; c) J. Takaya, N. Iwasawa J. Am. Chem. Soc.
2017, 139, 6074–6077; d) T. Nakamura, K. Suzuki, M. Yamashita, J. Am.
Chem. Soc. 2017, 139, 17763–17766; e) N. Hara, T. Saito, K. Semba, N.
Kuriakose, H. Zheng, S. Sakaki, Y. Nakao, J. Am. Chem. Soc. 2018, 140,
7070–7073.
[17] The role of anionic Pd(0) ate complexes in Heck and cross-coupling
reactions is widely recognized but very few such species have been
characterized so far. See: a) A. Jutand, C. Amatore, Acc. Chem. Res.
2000, 33, 314–321; b) J. G. de Vries, Dalton Trans. 2006, 421–429; c)
M. Kolter, K. Böck, K. Karaghiosoff, K. Koszinowski, Angew. Chem. Int.
Ed. 2017, 56, 13244–13248; Angew. Chem. 2017, 129, 13427–13431.
[18] HBPh3 salts display similar data: 11B –8.2 ppm, 1JB-H = 76-79 Hz, see:
D. Mukherjee, H. Osseili, T. P. Spaniol, J. Okuda, J. Am. Chem. Soc.
2016, 138, 10790–10793.
[3]
[4]
a) G. Bouhadir, D. Bourissou, Chem. Soc. Rev. 2016, 45, 1065–1079; b)
M. Devillard, G. Bouhadir, D. Bourissou, Angew. Chem. Int. Ed. 2015, 54,
730–732; Angew. Chem. 2015, 127, 740–742; c) W. Guan, G. Zeng, H.
Kameo, Y. Nakao, S. Sakaki, Chem. Rec. 2016, 16, 2405–2425; d) D.
You, F. P. Gabbaï, Trends in Chem. 2019, 1, 485‒496.
[19] For examples of B–H–M bridged complexes, see: a) I. R. Crossley, A. F.
Hill, Dalton Trans. 2008, 201–203; b) N. Tsoureas, Y.-Y. Kuo, M. F.
Haddow, G. R. Owen, Chem. Commun. 2011, 47, 484–486; c) H. Kameo,
H. Nakazawa, Organometallics 2012, 31, 7476–7484; d) J. J. Kiernicki,
J. P. Shanahan, M. Zellerb, N. K. Szymczak, Chem. Sci. 2019, 10, 5539–
5545.
a) F. G. Fontaine, D. Zargarian, J. Am. Chem. Soc. 2004, 126, 8786–
8794; b) M. Devillard, E. Nicolas, C. Appelt, J. Backs, S. Mallet-Ladeira,
G. Bouhadir, J. C. Slootweg, W. Uhl, D. Bourissou, Chem Commun. 2014,
50, 14805–14808; c) J. S. Jones, F. P. Gabbaï, Chem. Eur. J. 2017, 23,
1136–1144; d) D. You, F. P. Gabbaï, J. Am. Chem. Soc. 2017, 139,
6843–6846.
[20] Wiberg bond indexes of 0.757 (B–H) and 0.139 (Pd−H) were computed
by DFT for complex 2.[10]
[21] For an anionic Pd(0) complex adopting a dinuclear ligand-bridged
structure in the solid state, see: A. Seyboldt, B. Wucher, S. Hohnstein, K.
Eichele, F. Rominger, K. W. Tꢀrnroos, D. Kunz, Organometallics 2015,
34, 2717‒2725.
[5]
[6]
a) F. Inagaki, C. Matsumoto, Y. Okada, N. Maruyama, C. Mukai, Angew.
Chem. Int. Ed. 2015, 54, 818–822; Angew. Chem. 2015, 127, 832–836;
b) H. Yang, F. P. Gabbaï, J. Am. Chem. Soc. 2015, 137, 13425–13432;
c) S. Sen, I.-S. Ke, F. P. Gabbaï, Organometallics 2017, 36, 4224–4230.
a) W. H. Harman, J. C. Peters, J. Am. Chem. Soc. 2012, 134, 5080–
5082; b) W. H. Harman, T.-P. Lin, J. C. Peters, Angew. Chem. Int. Ed.
2014, 53, 1081–1086; Angew. Chem. 2014, 126, 1099–1104; c) S. N.
MacMillan, W. H. Harman, J. C. Peters, Chem. Sci. 2014, 5, 590–597; d)
H. Fong, M.-E. Moret, Y. Lee, J. C. Peters, Organometallics 2013, 32,
3053-3062; e) B. E. Cowie, D. J. H. Emslie, Chem. Eur. J. 2014, 20,
16899–16912; f) B. R. Barnett, C. E. Moore, A. L. Rheingold, J. S.
Figueroa, J. Am. Chem. Soc. 2014, 136, 10262–10265; g) M. Devillard,
R. Declercq, E. Nicolas, A. W. Ehlers, J. Backs, N. Saffon-Merceron, G.
Bouhadir, J. C. Slootweg, W. Uhl, D. Bourissou, J. Am. Chem. Soc. 2016,
138, 4917–4926; h) Y. Li, C. Hou, J. Jiang, Z. Zhang, C. Zhao, A. J. Page,
Z. Ke, ACS Catal. 2016, 6, 1655–1662.
[22] The presence of excess PPh3 strongly alters this reaction, less than 10%
conversion being observed when 10 equiv. of PPh3 are added. The
activation of chlorobenzene probably requires PPh3 dissociation to open
a coordination site at Pd.
[23] DFT calculations also suggest an anionic pathway under these
conditions: coordination of formate to boron, C‒Cl activation, B to Pd
formate migration, decarboxylation, reductive elimination (C‒H
coupling).[10] Attempts to generate the formate analog of 2 failed.
Reaction of complex 1 with HCO2K/[2.2.2]-cryptand was unproductive
and
the
formate
adduct
of
the
diphosphine
borane
[(DPB)OCHO][K([2.2.2]-cryptand)] reacted with Pd(PPh3)4 to give the
PdB complex 1.[10]
[24] For selected references dealing with deuterated drugs and deuteration
methods, see: a) T. G. Gant, J. Med. Chem. 2014, 57, 3595–3611; b) A.
Mullard, Nat. Rev. Drug Discovery 2016, 15, 219–221; c) F. Alonso, I. P.
Beletskaya, M. Yus, Chem. Rev. 2002, 102, 4009–4091; d) M. Kuriyama,
N. Hamaguchi, G. Yano, K. Tsukuda, K. Sato, O. Onomura, J. Org. Chem.
2016, 81, 8934–8946; d) M. Janni, S. Peruncheralathan, Org. Biomol.
Chem. 2016, 14, 3091–3097; e) X. Wang, M.-H. Zhu, D. P. Schuman, D.
[7]
The weak and adaptative character of TMLA interactions make Z-type
ligands very efficient in stabilizing electron-rich TM complexes. This
feature has been exploited in catalytic N2 and CO2 reduction. See for
examples: a) M. –E. Moret, J. C. Peters J. Am. Chem. Soc. 2011, 133,
18118–18121; b) J. S. Anderson, J. Rittle, J. C. Peters, Nature 2013, 501,
84–87; c) P. A. Rudd, S. Liu, L. Gagliardi, V. G. Young Jr., C. C. Lu, J.
Am. Chem. Soc. 2011, 133, 20724–20727; d) M. V. Vollmer, J. Xie, C. C.
This article is protected by copyright. All rights reserved.