4566
G. B. Shul’pin et al. / Tetrahedron Letters 46 (2005) 4563–4567
2. Shilov, A. E.; Shulꢀpin, G. B. Activation and Catalytic
Reactions of Saturated Hydrocarbons in the Presence of
Metal Complexes; Kluwer Academic: Dordrecht/Boston/
London, 2000, Chapter X (Homogeneous catalytic oxida-
tion of hydrocarbons by peroxides and other oxygen atom
donors).
can be concluded that the FeCl3–bipy combination in
acetonitrile is a catalyst for transformation of alkyl
hydroperoxides into the corresponding ketones.
Selectivity parameters for the oxidation of certain
hydrocarbons by H2O2–FeCl3–bipy are given in Table
1, which also summarises the corresponding data for
other alkane-oxygenating systems, particularly for the
H2O2–VOꢀ3 –PCA reagent which is known to generate
hydroxyl radicals,1,2,4,5,23,29,31,32 and for H2O2–LMnIV-
(O)3MnIVL–CH3COOH (where L = 1,4,7-trimethyl-1,4,
7-triazacyclononane) system2,4,5,33–38 which is believed
to oxidise alkanes via attack of Mn(V)@O species on a
C–H bond. It can be seen that oxidations of all the test
hydrocarbons proceeded with low selectivity parameters
which are close to the parameters determined for the hy-
3. Dunford, H. B. Coord. Chem. Rev. 2002, 233–234, 311–
318.
4. Shulꢀpin, G. B. J. Mol. Catal. A: Chem. 2002, 189, 39–66.
5. Shulꢀpin, G. B. C. R. Chim. 2003, 6, 163–178.
6. Friesner, R. A.; Baik, M.-H.; Gherman, B. F.; Guallar, V.;
Wirstam, M.; Murphy, R. B.; Lippard, S. J. Coord. Chem.
Rev. 2003, 238–239, 267–290.
7. Shulꢀpin, G. B. Oxidations of C–H Compounds Catalyzed
by Metal Complexes, 2nd ed. In Transition Metals for
Organic Synthesis; Beller, M., Bolm, C., Eds.; Wiley–
VCH: Weinheim/New York, 2004; Vol. 2, pp 215–242,
Chapter 2.2.
droxyl-generating systems: H2O2–hm and H2O2–VOꢀ–
3
PCA. The oxidation of a disubstituted cyclohexane
was not a stereoselective reaction.
8. Gozzo, F. J. Mol. Catal. A: Chem. 2001, 171, 1–22.
9. Buda, F.; Ensing, B.; Gribnau, M. C. M.; Baerends, E. J.
Chem. Eur. J. 2003, 9, 3436–3444.
10. Nam, W.; Valentine, S. New J. Chem. 1989, 13, 677–682.
11. Fish, R. H.; Konings, M. S.; Oberhausen, K. J.; Fong, R.
H.; Yu, W. M.; Christou, G.; Vincent, J. B.; Coggin, D.
K.; Buchanan, R. M. Inorg. Chem. 1991, 30, 3002–3006.
12. Shulꢀpin, G. B.; Nizova, G. V. React. Kinet. Catal. Lett.
1992, 48, 333–338.
13. Perkins, M. J. Chem. Soc. Rev. 1996, 229–236.
14. Kulikova, V. S.; Gritsenko, O. N.; Shteinman, A. A.
Mendeleev Commun. 1996, 119–120.
All these data clearly testify that the mechanism of al-
kane oxidation by the H2O2–FeCl3–bipy system in ace-
tonitrile includes the formation of free hydroxyl
radicals. Scheme 1 shows a catalytic cycle which we pro-
pose for hydroxyl radical generation by the system
under consideration. One can assume that the role of
bipy is proton transfer (via protonation–deprotonation
steps of the N-atom) of a coordinated H2O2 molecule
(structure B) to an –OH ligand resulting in the forma-
tion of a hydroperoxyl derivative E. Bipyridine could
also assist the transformation of F to G. Species G gen-
erates a hydroxyl radical with the simultaneous conver-
sion into the starting species A.
15. Liu, C.; Ye, X.; Zhan, R.; Wu, Y. J. Mol. Catal. A: Chem.
1996, 112, 15–22.
´
16. Menage, S.; Vincent, J. M.; Lambeaux, C.; Fontecave, M.
J. Mol. Catal. A: Chem. 1996, 113, 61–75.
´
17. Duboc-Toia, C.; Menage, S.; Lambeaux, C.; Fontecave,
M. Tetrahedron Lett. 1997, 38, 3727–3730.
18. Nishino, S.; Hosomi, H.; Ohba, S.; Matsushima, H.;
Tokii, T.; Nishida, Y. J. Chem. Soc., Dalton Trans. 1999,
1509–1513.
Acknowledgements
´
19. Mekmouche, Y.; Duboc-Toia, C.; Menage, S.; Lambeaux,
C.; Fontecave, M. J. Mol. Catal. A: Chem. 2000, 156, 85–89.
20. Roelfes, G.; Lubben, M.; Hage, R.; Que, L., Jr. Chem.
Eur. J. 2000, 6, 2152–2159.
The authors thank the Swiss National Science Founda-
tion, the State of Sa˜o Paulo Research Foundation (Fun-
dac¸a˜o de Amparo a Pesquisa do Estado de Sa˜o Paulo,
FAPESP), the Brazilian National Council on Scientific
and Technological Development (Conselho Nacional
´ ´
21. Breheret, A.; Lambeaux, C.; Menage, S.; Fontecave, M.;
Dallemer, F.; Fache, E.; Pierre, J.-L.; Chautemps, P.;
´
´
´
Averbusch-Pouchot, M.-T. C. R. Acad. Sci. Paris, Serie
IIc, Chem. 2001, 4, 27–34.
22. Chen, K.; Que, L., Jr. J. Am. Chem. Soc. 2001, 123, 6327–
´
de Desenvolvimento Cientifico e Tecnologico, CNPq,
Brazil) and the Russian Basic Research Foundation
for support. This work was also supported by a grant
from the Section of Chemistry and Material Science of
the Russian Academy of Sciences (Program ꢁA theoreti-
cal and experimental study of chemical bonds and mech-
anisms of main chemical processesꢀ).
G. B. Shulꢀpin expresses his gratitude to the Swiss
National Science Foundation (Grant No. 20-64832.01),
the FAPESP (Grant No. 2002/08495-4), the CNPq
6337.
23. Shulꢀpin, G. B.; Kozlov, Y. N.; Nizova, G. V.; Suss-Fink,
¨
G.; Stanislas, S.; Kitaygorodskiy, A.; Kulikova, V. S. J.
Chem. Soc., Perkin Trans. 2 2001, 1351–1371.
24. Nizova, G. V.; Krebs, B.; Suss-Fink, G.; Schindler, S.;
¨
Westerheide, L.; Gonzalez Cuervo, L.; Shulꢀpin, G. B.
Tetrahedron 2002, 58, 9231–9237.
´
25. Balogh-Hergovich, E.; Speier, G.; Reglier, M.; Giorgi, M.;
´
Kuzmann, E.; Vertes, A. Eur. J. Inorg. Chem. 2003, 1735–
´
´
(Grant No. 300601/01-8), Institut de Chimie, Universite
de Neuchatel and the Faculdade de Quımica, Pontifıcia
1740.
26. Paczesniak, T.; Sobkowiak, A. J. Mol. Catal. A: Chem.
ˆ
´
´
´
2003, 194, 1–11.
´
Universidade Catolica de Campinas for making it
possible for him to stay at these Universities as invited
Professor and to perform a part of the presentwork.
27. Shulꢀpin, G. B.; Stoeckli-Evans, H.; Mandelli, D.; Kozlov,
Y. N.; Tesouro Vallina, A.; Woitiski, C. B.; Jimenez, R. S.;
Carvalho, W. A. J. Mol. Catal. A: Chem. 2004, 219, 255–
264.
28. Shulꢀpin, G. B.; Nizova, G. V.; Kozlov, Y. N.; Gonzalez
References and notes
Cuervo, L.; Suss-Fink, G. Adv. Synth. Catal. 2004, 346,
317–332.
¨
1. Shilov, A. E.; Shulꢀpin, G. B. Chem. Rev. 1997, 97, 2879–
2932.
29. Shulꢀpin, G. B.; Attanasio, D.; Suber, L. J. Catal. 1993,
142, 147–152.