R. Wang, Y. Yue, J. Qi et al.
Journal of Catalysis 399 (2021) 1–7
Tetrahedron 35 (5) (1979) 567–607; (d) N. Y. M. Fung, P. de Mayo, J. H.
Schauble, A. C. Weedon, Reduction by tributyltin hydride of carbonyl
compounds adsorbed on silica gel: selective reduction of aldehydes, J. Org.
Chem. 43 (20) (1978) 3977–3979; (e) J. Magano, J. R. Dunetz, Large-Scale
carbonyl reductions in the pharmaceutical industry, Org. Process Res. Dev. 16
(6) (2012) 1156–1184; (f) S. Krishnamurthy, Lithium tris (3-ethyl-3-
pentyloxy) aluminohydride. A new remarkably chemoselective reagent for
the reduction of aldehydes in the presence of ketones, J. Org. Chem. 46 (22)
(1981) 4628–4629; (g) Y. Kuroiwa, S. Matsumura, K. Toshima, Chemoselective
reduction of aldehydes over ketones with sodium tris (hexafluoroisopropoxy)
borohydride, Synlett. 2008 (16) (2008) 2523–2525; (h) M. V. N. de Souza, T. R.
A. Vasconcelos, Recent methodologies mediated by sodium borohydride in the
reduction of different classes of compounds, Appl. Organomet. Chem. 20 (11)
(2006) 798–810.
[8] (a) K. Fujita, T. Yoshida, Y. Imori, R. Yamaguchi, Dehydrogenative oxidation of
primary and secondary alcohols catalyzed by
a Cp*Ir complex having a
functional C, N-chelate ligand, Org. Lett. 13 (9) (2011) 2278–2281; (b) R.
Yamaguchi, C. Ikeda, Y. Takahashi, Homogeneous catalytic system for
reversible
dehydrogenationꢂhydrogenation
reactions
of
nitrogen
heterocycles with reversible interconversion of catalytic species, J. Am.
Chem. Soc. 131 (24) (2009) 8410–8412; (c) Y. Tanaka, M. Kobayashi, R.
Yamaguchi, Homogeneous perdehydrogenation and perhydrogenation of
fused bicyclic N-heterocycles catalyzed by iridium complexes bearing
a
functional bipyridonate ligand, J. Am. Chem. Soc. 136 (13) (2014) 4829–
4832; (d) K. Fujita, R. Yamaguch, Cooperative catalysis by iridium complexes
with a bipyridonate ligand: versatile dehydrogenative oxidation of alcohols
and reversible dehydrogenation–hydrogenation between 2-propanol and
acetone, Angew. Chem. Int. Ed. 51 (51) (2012) 12790–12794.(e) R. Kawahara,
K. Fujita, R. Yamaguchi, Multialkylation of aqueous ammonia with alcohols
catalyzed water-soluble Cp*Ir-Ammine complexes, J. Am. Chem. Soc. 132 (43)
(2010) 15108–15111.
[3] (a) F. Spindler, H. U. Blaser, Transition Metals for Organic Synthesis, Vol. 2
(Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, (2004) 113; (b) H. U. Blaser, F.
Spindler, Handbook of Homogeneous Hydrogenation, (Eds.: J. G. de Vires, C. J.
Elsevier), Wiley-VCH, Weinheim, 3 (2007) 1193; (c) S. Gladiali, E. Alberico,
Asymmetric transfer hydrogenation: chiral ligands and applications, Chem.
Soc. Rev. 35 (2006) 226-236; (d) X. Wu, J. Liu, X. Li, A. Zanotti-Gerosa, F.
Hancock, D. Vinci, J. Ruan, J. Xiao, On water and in air: fast and highly
chemoselective transfer hydrogenation of aldehydes with iridium catalysts,
Angew. Chem. Int. Ed. 45 (40) (2006) 6718ꢂ6722; (e) S. Fleischer, S. Zhou, K.
Junge, M. Beller, General and highly efficient iron-catalyzed hydrogenation of
[9] (a) R. Wang, J. Ma, F. Li, Synthesis of
a-alkylated ketones via tandem
acceptorless dehydrogenation/a-alkylation from secondary and primary
alcohols catalyzed by metal–ligand bifunctional iridium complex [Cp*Ir(2,20-
bpyO)(H2O)], J. Org. Chem. 80 (21) (2015) 10769–10776; (b) R. Wang, H. Fan,
W. Zhao, F. Li, Acceptorless dehydrogenative cyclization of o-aminobenzyl
alcohols with ketones to quinolines in water catalyzed by water-soluble
metal–ligand bifunctional catalyst [Cp*(6,60-(OH)2bpy)(H2O)][OTf]2, Org. Lett.
18 (15) (2016) 3558–3561; (c) R. Wang, Y. Tang, M. Xu, C. Meng, Transfer
hydrogenation of aldehydes and ketones with isopropanol under neutral
conditions catalyzed by a metal–ligand bifunctional catalyst [Cp*Ir(2,20-bpyO)
(H2O)], J. Org. Chem. 83 (4) (2018) 2274–2281.
aldehydes, ketones, and a,b-unsaturated aldehydes, Angew. Chem. Int. Ed. 52
(19) (2013) 5120ꢂ5124; (f) D. Talwar, X. Wu, O. Saidi, N. P. Salguero, J. Xiao,
Versatile iridicycle catalysts for highly efficient and chemoselective transfer
hydrogenation of carbonyl compounds in water, Chem. - Eur. J. 20 (40) (2014)
12835ꢂ12842; (g) X. S. Baldino, S. Facchetti, H. G. Nedden, A. Zanotti-Gerosa,
W. Baratta, Chemoselective transfer hydrogenation of aldehydes with
HCOONH4 catalyzed by RuCl(CNNPh)(PP) pincer complexes, ChemCatChem 8
(20) (2016) 3195ꢂ3198; (h) Z. Yang, Z. Zhu, R. Luo, X. Qiu, J. Liu, J. Yang, W.
Tang, Iridium-catalyzed highly efficient chemoselective reduction of aldehydes
in water using formic acid as the hydrogen source, Green Chem. 19 (14) (2017)
3296ꢂ3301; (i) M. Pandrala, A. Resendez, S. V. Malhotra, Polypyridyl iridium
(III) based catalysts for highly chemoselective hydrogenation of aldehydes, J.
Catal. 378 (2019) 283–288.
[4] (a) S. Werkmeister, K. Junge, M. Beller, Catalytic hydrogenation of carboxylic
acid esters, amides, and nitriles with homogeneous catalysts, Org. Process Res.
Dev. 18 (2) (2014) 289–302; (b) Y. N. Duan, X. Y. Du, Z. K. Cui, Y. Q. Zeng, Y. F.
Liu, T. L. Yang, J. L. Wen, X. M. Zhang, Homogeneous hydrogenation with a
cobalt/tetraphosphine catalyst: a superior hydride donor for polar double
bonds and N–heteroarenes, J. Am. Chem. Soc. 141 (51) (2019) 20424ꢂ20433;
(c) M. Basauri-Molina, C. F. Riemersma, M. A. Würdemann, H. Kleijn, R. J. M.
Klein Gebbink, Lipase active site covalent anchoring of Rh(NHC) catalysts:
towards chemoselective artificial metalloenzymes, Chem. Commun. 51(31)
(2015) 6792-6795; (d) R. Sole, M. Bortoluzzi, A. Spannenberg, S. Tin, V.
Beghetto, J. G. de Vries, Synthesis, characterization and catalytic activity of
novel ruthenium complexes bearing NNN click based ligands, Dalton Trans. 48
(36) (2019) 13580–13588; (e) M. Garbe, Z. H. Wei, B. Tannert, A. Spannenberg,
H. J. Jiao, S. Bachmann, M. Scalone, K. Junge, M. Beller, Enantioselective
hydrogenation of ketones using different metal complexes with a chiral PNP
pincer ligand, Adv. Synth. Catal. 361 (18) (2019) 1913–1920; (f) P. Puylaert, R.
V. Heck, Y. T. Fan, A. Spannenberg, W. Baumann, M. Beller, J. Medlock, W.
[12] (a) R. Kawahara, K. Fujita, R. Yamaguchi, Dehydrogenative oxidation of
alcohols in aqueous media using water-soluble and reusable Cp*Ir catalysts
bearing a functional bipyridine ligand, J. Am. Chem. Soc. 134 (8) (2012), 3643–
3646; (b) R. Z. Wang, X. Y. Han, J. Xu, P. Liu, F. Li, Transfer hydrogenation of
ketones and imines with methanol under base-free conditions catalyzed by an
anionic metalꢂligand bifunctional Iridium catalyst, J. Org. Chem. 85 (4) 2020
2242ꢂ2249.
[13] The reaction of cat. 6 (2 mol%) with acetophenone (1 mmol) was performed
under 1 atm H2 in D2O at 30 °C for 20 min, and a peak (d ꢂ10.7) was observed
by the analysis of 1H NMR spectra. It was supposed to be a characteristic signal
of iridium hydride species, see Supplementary Material.
Bonrath, L. Lefort, S. Hinze, J. G. de Vries, Selective hydrogenation of
a
,b-
unsaturated aldehydes and ketones by air-stable ruthenium NNS complexes,
Chem. -Eur. J. 23 (25) (2017) 8473–8481; (g) D. Wang, T. Roisnel, C. Darcel, J.
Sortais, Hydrogenation of ketones with a manganese PN3P pincer pre-catalyst
antoine bruneau-voisine, Cataly. Commun. 92 (2017) 1–4; (h) S. R. Sler, J.
Obenauf, R. Kempe,
A highly active, easily accessible cobalt catalyst for
selective hydrogenation of C=O bonds, J. Am. Chem. Soc. 137 (25) (2015) 7998–
8001; (i) R. Buhaibeh, Oleg. A. Filippov, A. Bruneau-Voisine, J. Willot, C.
Duhayon, D. A. Valyaev, N. Lugan, Y. Canac, J. Sortais, Phosphine-NHC
manganese hydrogenation catalyst exhibiting a non-classical metal-ligand
cooperative H2 activation mode, Angew. Chem. Int. Ed. 58 (20) (2019) 6727–
6731.
[5] (a) F. Joó, Aqueous organometallic catalysis, Kluwer: Dordrecht, The
Netherlands, (2001); (b) D. J. Adams, P. J. Dyson, S. J. Tavener, Chemistry in
alternative reaction media; Wiley: Chichester, U.K. (2004); (c) B. Cornils, W. A.
Herrmann, Aqueous-phase organometallic catalysis, 2nd ed., Wiley-VCH:
Weinheim, Germany, (2004); (d) C. J. Li, L. Chen, Organic chemistry in water,
Chem. Soc. Rev. 35 (2006) 68–82; (e) T. Kitanosono, K. Masuda, P. Xu, S.
Kobayashi, Catalytic organic reactions in water toward sustainable society,
Chem. Rev. 118 (2) (2018) 679–746; (f) P. Lorenzo-Luis, A. Romerosa, M.
Serrano-ruiz, Catalytic isomerization of allylic alcohols in water, ACS Catal. 2
(6) (2012) 1079ꢂ1086; (g) A. Mehta, B. Saha, A. A. Koohang, M. S. Chorghade,
Arene ruthenium catalyst MCAT-53 for the synthesis of heterobiaryl
compounds in water through aromatic CꢂH bond activation, Org. Process
Res. Dev. 22 (9) (2018) 1119ꢂ1130.
[21] Because the solubility of the reactant and the corresponding products were
limited in pure water, the stirring speed was very important for the
heterogeneous reaction. Hence,
required under standard reaction conditions.
a
high stirring speed (ꢃ 1500 rmp) was
7