Selective Hydrogenation of Amides using Ruthenium/Molybdenum Catalysts
described below. Product solutions were analysed by GC as
previously described.
[6] G. Beamson, A. J. Papworth, C. Philipps, A. M. Smith,
[6]
R. Whyman, J. Catal. 2010, 103, 93–102.
7] P. Kluson, L. Cerveny, Appl. Catal. A: Gen. 1995, 128,
13–31.
8] J. P. Breen, R. Burch, K. Griffin, C. Hardacre, M.
Hayes, X. Huang, S. D. OꢁBrien, J. Catal. 2005, 236,
[
[
Preparation of Ru/MoO from Ru (CO) and MoO
3
3
3
12
This material was obtained using the procedure described
above, with [Ru (CO) ] (0.022 g) and a suspension of the
3
12
2
70–281.
requisite amount of MoO3 (0.0075 g) to afford a Mo:Ru
composition of ca. 0.5, in a DME (30 mL) solution contain-
[
9] J. Volf, J. Pa sˇ ek, in: Catalytic Hydrogenation, (Ed.: L.
Cerveny), Elsevier Science, Amsterdam, 1986, pp 105–
ing CyCONH (0.235 g).
2
1
45.
[
10] S. Nishimura, Handbook of Heterogeneous Catalytic
Hydrogenation for Organic Synthesis, John Wiley and
Sons, Inc., New York, 2001, and references cited there-
in.
Ex situ Characterisation
XRD: A monochromated Co K (l=1.7902 ꢃ) X-ray source
was used.
XPS: Representative examples of both freshly prepared,
and used, catalysts, together with a series of primary stand-
[11] H. Sigel, R. B. Martin, Chem. Rev. 1982, 82, 385–426.
[12] See, for example, J. Clayden, N. Greeves, S. Warren, P.
Wothers, Organic Chemistry, Oxford University Press,
2001.
ards (Mo foil, MoO , Ru pellet and Ru powder) were ana-
3
lysed using a Scienta ESCA 300 XPS spectrometer at
NCESS, Daresbury. The curve fitting procedure for the Mo
[13] Y. Kikugawa, S. Ikegami, S. I. Yamada, Chem. Pharm.
3
d spectra involved fixing the areas of the Mo 3d5/2 and 3d3/2
Bull. 1969, 17, 98–104.
lines at the theoretical ratio of 60:40, and using a DE value
of 3.2 eV in accordance with the known separation of the 3d
doublet in Mo and MoO3.
EDX-STEM: Elemental compositions of the metallic
components were measured using the most intense Ru and
Mo L 1a lines at 2.559 and 2.293 keV, respectively; Ru, Mo
and O K 1a lines at 19.279, 17.479 and 0.529 keV, respec-
[14] H.-J. Zhu, K.-T. Lu, G.-R. Sun, J.-B. He, H.-Q. Li, C. U.
Pittman, Jr, New J. Chem. 2003, 27, 409–413.
[15] F. Piacenti, M. Bianchi, P. Frediani, E. Benedetti,
Inorg. Chem. 1971, 10, 2759–2763.
[28,29]
[16] J. W. Koepke, J. R. Johnson, S. A. R. Knox, H. D.
Kaesz, J. Am. Chem. Soc. 1975, 97, 3947–3952.
[
[
[
[
[
[
[
[
[
[
17] H. W. Walker, C. T. Kresge, P. C. Ford, R. G. Pearson,
tively, were also used for Ru/MoO sample.
3
J. Am. Chem. Soc. 1979, 101, 7428–7429.
18] R. Whyman, A. P. Wright, J. A. Iggo, B. T. Heaton, J.
Chem. Soc. Dalton Trans. 2002, 771–777.
19] F. A. Cotton, A. K. Fischer, G. Wilkinson, J. Am.
Chem. Soc. 1959, 81, 800–803.
20] R. Koelliker, G. Bor, J. Organomet. Chem. 1991, 417,
Microanalysis: The term ꢀnominal compositionꢁ used in
the text refers to the relative quantities of Ru and Mo used
in the initial catalyst preparations. Unfortunately, despite
numerous attempts, it proved impossible to confirm the
actual compositions in the catalytically active materials by
ICP-AES analysis, principally because of the well known in-
4
39–451.
21] I. W. Stolz, G. R. Dobson, R. K. Sheline, Inorg. Chem.
963, 2, 322–326.
[30]
tractable nature of Ru towards acid digestion.
1
22] H. E. Swanson, R. K. Fuyat, G. M. Ugrinic, Natl. Bur.
Stand. (U.S.) 1955, Circ. 539, Vol. IV.
23] A. V. Ruban, H. L. Skriver, J. S. Norskov, Phys. Rev. B
Acknowledgements
1
999, 59, 15990–16000.
24] R. Burch, J. Chem. Soc. Faraday Trans. 1 1978, 74,
982–2990.
The authors acknowledge the assistance of Mr. S. Apter and
Mr. A. Mills for microanalyses and mass spectrometry, re-
spectively, Dr. J. Claridge and Dr. J. A. Iggo (Department of
Chemistry) and Mr. A. J. Pettman (Pfizer Ltd) for discus-
sions, EPSRC for financial support of NCESS, Daresbury,
under grant GR/S14252/01, and the Leverhulme Fine Chemi-
cals Forum for financial support (to CP and AMS).
2
25] A. A. N. Magro, G. R. Eastham, D. J. Cole-Hamilton,
Chem. Commun. 2007, 3154–3156.
26] A. Katrib, J. W. Sobczak, M. Krawczyk, L. Zommer, A.
Benadda, A. Jablonski, G. Maire, Surf. Interface Anal.
2
002, 34, 225–229.
[
27] C. R. Eady, P. F. Jackson, B. F. G. Johnson, J. Lewis,
M. C. Malatesta, J. Chem. Soc. Dalton Trans. 1980,
References
3
83–389.
[
28] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder,
G. E. Muilenberg, Handbook of X-ray Photoelectron
Spectroscopy, Perkin–Elmer Corporation, Physical Elec-
tronics Division, Eden Prairie, Minn. 55344, USA, 1979.
29] D. Briggs, M. P. Seah, Practical Surface Analysis, Vol. 1,
Auger and X-ray Photoelectron Spectroscopy, 2nd edn.,
Wiley, New York, 1990, and references cited therein.
30] M. Balcerzak, Crit. Rev. Anal. Chem. 2002, 32, 181–
[
[
[
[
[
1] P. N. Rylander, Hydrogenation Methods, Academic
Press, 1985, and references therein.
2] B. Wojcik, H. Adkins, J. Am. Chem. Soc. 1934, 56, 247;
2
419–2424.
3] D.-H. He, N. Wasaka, T. Fuchikami, Tetrahedron Lett.
995, 36, 1059–1062.
[
[
1
4] T. Fuchikami, C. Hirosawa, N. Wasaka, Tetrahedron
Lett. 1996, 37, 6749–6752.
5] A. Behr, V. A. Brehme, Adv. Synth. Catal. 2002, 344,
2
26.
5
25–532.
Adv. Synth. Catal. 2010, 352, 869 – 883
ꢂ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
883