Paper
Green Chemistry
products was performed using a GC system (Agilent 7890B)
fitted with a flame ionization detector (FID) and a HP-5
column (30 m × 0.320 mm × 0.25 μm) using naphthalene as an
internal standard and referring to standard curves. The
content of formate was determined by 1H NMR using xylene as
an internal standard.
C. J. Elsevier and B. de Bruin, Science, 2015, 350, 298–302;
(e) K. Yuan, T. Song, D. Wang, X. Zhang, X. Gao, Y. Zou,
H. Dong, Z. Tang and W. Hu, Angew. Chem., Int. Ed., 2018,
57, 5708–5713; (f) R. C. Cammarota and C. C. Lu, J. Am.
Chem. Soc., 2015, 137, 12486–12489; (g) L. Wang, E. Guan,
J. Zhang, J. Yang, Y. Zhu, Y. Han, M. Yang, C. Cen, G. Fu,
B. C. Gates and F. S. Xiao, Nat. Commun., 2018, 9, 1362.
4 (a) C. Pilar Jiménez-Gómez, J. A. Cecilia, D. Durán-Martín,
R. Moreno-Tost, J. Santamaría-González, J. Mérida-Robles,
R. Mariscal and P. Maireles-Torres, J. Catal., 2016, 336,
107–115; (b) G. W. Huber, J. N. Chheda, C. J. Barrett and
J. A. Dumesic, Science, 2005, 308, 1446–1450; (c) C. Zhao,
Y. Kou, A. A. Lemonidou, X. Li and J. A. Lercher, Angew.
Chem., Int. Ed., 2009, 48, 3987–3990.
NMR spectroscopic study
1
1H, 13C and 2D H–13C HSQC NMR spectra of the liquid mix-
tures were obtained with normal hydrosilanes in deuterated
solvents (typically, MTHF-d10) or in protonated solvents con-
taining 5% DMSO-d6 as a lock substance on a Bruker Avance
III 800 MHz spectrometer equipped with a TCI cryoprobe. The
ex situ samples of reaction progress were obtained by quench-
ing reactions with methanol-d4 at indicated times. For the
isotope-labeling study, 1H, 13C, DEPT-135 and 1H–13C HSQC
NMR spectra of the reaction mixtures, which were obtained
using deuterium reagents (diphenylsilane-d2 and THF-d8 with
5 (a) Q. Meng, M. Hou, H. Liu, J. Song and B. Han, Nat.
Commun., 2017, 8, 14190; (b) M. Tamura, N. Yuasa, J. Cao,
Y. Nakagawa and K. Tomishige, Angew. Chem., Int. Ed.,
2018, 57, 8058–8062.
or without CD3OD post-treatment), were recorded on
JEOL-ECX 500 NMR spectrometer.
a
6 (a) W. Liu, Y. Jiang, K. H. Dostert, C. P. O’Brien, W. Riedel,
A. Savara, S. Schauermann and A. Tkatchenko, Sci. Adv.,
2017, 3, e1700939; (b) Y. Zhu, H. Qian, B. A. Drake and
R. Jin, Angew. Chem., Int. Ed., 2010, 49, 1295–1298.
Conflicts of interest
7 (a) C. O. Tuck, E. Pérez1, I. T. Horváth, R. A. Sheldon and
M. Poliakoff, Science, 2012, 337, 695–699; (b) Y. S. Jang,
B. Kim, J. H. Shin, Y. J. Choi, S. Choi, C. W. Song, J. Lee,
H. G. Park and S. Y. Lee, Biotechnol. Bioeng., 2012, 109,
2437–2459; (c) H. Li, A. Riisager, S. Saravanamurugan,
A. Pandey, R. S. Sangwan, S. Yang and R. Luque, ACS Catal.,
2018, 8, 148–187; (d) H. Li and R. L. Smith, Nat. Catal.,
2018, 1, 176–177.
8 (a) Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu and
J. A. Dumesic, Nature, 2007, 447, 982–985; (b) J. N. Chheda,
G. W. Huber and J. A. Dumesic, Angew. Chem., Int. Ed.,
2007, 46, 7164–7183; (c) D. M. Alonso, S. G. Wettstein and
J. A. Dumesic, Green Chem., 2013, 15, 584–595.
There are no conflicts to declare.
Acknowledgements
This work is financially supported by the National Natural
Science Foundation of China (21576059 and 21666008), Fok
Ying-Tong Education Foundation (161030), Guizhou Science &
Technology Foundation ([2018]1037 and [2017]5788), and Key
Technologies R&D Program of China (2014BAD23B01). We
acknowledge the NMR center DTU (Denmark) for recording
NMR spectra, and Institute of Chemistry (CAS) for DFT
calculations. S. S. thanks the Department of Biotechnology
(Government of India) New Delhi, India for support.
9 (a) W. Deng, Y. Wang and N. Yan, Curr. Opin. Green Sustain.
Chem., 2016, 2, 54–58; (b) H. Li, Z. Fang, J. Luo and
S. Yang, Appl. Catal., B, 2017, 200, 182–191.
10 (a) Z. Zhang, ChemSusChem, 2016, 9, 156–171;
(b) B. Banerjee, R. Singuru, S. K. Kundu, K. Dhanalaxmi,
L. Bai, Y. Zhao, B. M. Reddy, A. Bhaumik and J. Mondal,
Catal. Sci. Technol., 2016, 6, 5102–5115; (c) S. Pendem,
I. Mondal, A. Shrotri, B. S. Rao, N. Lingaiah and J. Mondal,
Notes and references
1 (a) D. Wang and D. Astruc, Chem. Rev., 2015, 115, 6621–
6686; (b) J. H. Xie, S. F. Zhu and Q. L. Zhou, Chem. Rev.,
2011, 111, 1713–1760; (c) J. Pritchard, G. A. Filonenko,
R. van Putten, E. J. M. Hensen and E. A. Pidko, Chem. Soc.
Rev., 2015, 44, 3808–3833.
2 (a) R. M. Bullock, Science, 2013, 342, 1054–1055;
(b) A. Corma and P. Serna, Science, 2006, 313, 332–334;
(c) P. Ryabchuk, G. Agostini, M. M. Pohl, H. Lund,
A. Agapova, H. Junge, K. Junge and M. Beller, Sci. Adv.,
2018, 4, eaat0761.
Sustainable
Energy
Fuels,
2018,
2,
1516–1529;
(d) K. Dhanalaxmi, R. Singuru, S. Mondal, L. Bai,
B. M. Reddy, A. Bhaumik and J. Mondal, ACS Sustainable
Chem. Eng., 2017, 5, 1033–1045; (e) D. Ren, X. Wan, F. Jin,
Z. Song, Y. Liu and Z. Huo, Green Chem., 2016, 18, 5999–
6003; (f) T. Mizugaki, Y. Nagatsu, K. Togo, Z. Maeno,
T. Mitsudome, K. Jitsukawa and K. Kaneda, Green Chem.,
2015, 17, 5136–5139; (g) J. Cui, J. Tan, Y. Zhu and F. Cheng,
ChemSusChem, 2018, 11, 1316–1320; (h) S. C. Patankar and
G. D. Yadav, ACS Sustainable Chem. Eng., 2015, 3, 2619–2630.
3 (a) K. Manna, T. Zhang, M. Carboni, C. W. Abney and
W. Lin, J. Am. Chem. Soc., 2014, 136, 13182–13185; (b) H. Li,
Z. Fang, R. L. Smith and S. Yang, Prog. Energy Combust. Sci., 11 (a) S. G. Wettstein, D. M. Alonso, Y. Chong and
2016, 55, 98–194; (c) M. Naruto and S. Saito, Nat. Commun.,
2015, 6, 8140; (d) T. J. Korstanje, J. I. van der Vlugt,
J. A. Dumesic, Energy Environ. Sci., 2012, 5, 8199–8203;
(b) W. Luo, M. Sankar, A. M. Beale, Q. He, C. J. Kiely,
5334 | Green Chem., 2018, 20, 5327–5335
This journal is © The Royal Society of Chemistry 2018