Organic Letters
Letter
Cells. Angew. Chem., Int. Ed. 2017, 56 (1), 243−247. (e) Matikonda,
S. S.; Orsi, D. L.; Staudacher, V.; Jenkins, I. A.; Fiedler, F.; Chen, J.;
Gamble, A. B. Bioorthogonal prodrug activation driven by a strain-
promoted 1,3-dipolar cycloaddition. Chem. Sci. 2015, 6 (2), 1212−
1218. (f) Carlson, J. C. T.; Mikula, H.; Weissleder, R. Unraveling
Tetrazine-Triggered Bioorthogonal Elimination Enables Chemical
Tools for Ultrafast Release and Universal Cleavage. J. Am. Chem. Soc.
2018, 140 (10), 3603−3612. (g) Neumann, K.; Gambardella, A.;
Lilienkampf, A.; Bradley, M. Tetrazine-mediated bioorthogonal
prodrug−prodrug activation. Chem. Sci. 2018, 9 (36), 7198−7203.
(5) Rossin, R.; Versteegen, R. M.; Wu, J.; Khasanov, A.; Wessels, H.
J.; Steenbergen, E. J.; Ten Hoeve, W.; Janssen, H. M.; van Onzen, A.;
Hudson, P. J.; Robillard, M. S. Chemically triggered drug release from
an antibody-drug conjugate leads to potent antitumour activity in
mice. Nat. Commun. 2018, 9 (1), 1484.
(6) (a) Ji, X.; Zhou, C.; Ji, K.; Aghoghovbia, R. E.; Pan, Z.;
Chittavong, V.; Ke, B.; Wang, B. Click and Release: A Chemical
Strategy toward Developing Gasotransmitter Prodrugs by Using an
Intramolecular Diels−Alder Reaction. Angew. Chem., Int. Ed. 2016, 55,
15846−15851. (b) Ji, X.; Ji, K.; Chittavong, V.; Yu, B.; Pan, Z.; Wang,
B. An esterase-activated click and release approach to metal-free CO-
prodrugs. Chem. Commun. 2017, 53 (59), 8296−8299. (c) Pan, Z.;
Chittavong, V.; Li, W.; Zhang, J.; Ji, K.; Zhu, M.; Ji, X.; Wang, B.
Organic CO Prodrugs: Structure−CO-Release Rate Relationship
Studies. Chem. - Eur. J. 2017, 23 (41), 9838−9845.
D.; Bernardes, G. J. Developing drug molecules for therapy with
carbon monoxide. Chem. Soc. Rev. 2012, 41 (9), 3571−83.
(16) (a) Palao, E.; Slanina, T.; Muchova, L.; Solomek, T.; Vitek, L.;
Klan, P. Transition-metal-free CO-releasing BODIPY derivatives
activatable by visible to NIR light as promising bioactive molecules.
J. Am. Chem. Soc. 2016, 138 (1), 126−33. (b) Soboleva, T.; Esquer,
H. J.; Benninghoff, A. D.; Berreau, L. M. Sense and Release: A Thiol-
Responsive Flavonol-Based Photonically Driven Carbon Monoxide-
Releasing Molecule That Operates via a Multiple-Input AND Logic
Gate. J. Am. Chem. Soc. 2017, 139 (28), 9435−9438. (c) Pan, Z.;
Zhang, J.; Ji, K.; Chittavong, V.; Ji, X.; Wang, B. Organic CO Prodrugs
Activated by Endogenous ROS. Org. Lett. 2018, 20 (1), 8−11. (d) Ji,
X.; De La Cruz, L. K. C.; Pan, Z.; Chittavong, V.; Wang, B. pH-
Sensitive metal-free carbon monoxide prodrugs with tunable and
predictable release rates. Chem. Commun. 2017, 53 (69), 9628−9631.
(17) (a) Ji, X.; Wang, B. Strategies toward Organic Carbon
Monoxide Prodrugs. Acc. Chem. Res. 2018, 51 (6), 1377−1385. (b) Ji,
X.; Pan, Z.; Li, C.; Kang, T.; De La Cruz, L. K. C.; Yang, L.; Yuan, Z.;
Ke, B.; Wang, B. Esterase-Sensitive and pH-Controlled Carbon
Monoxide Prodrugs for Treating Systemic Inflammation. J. Med.
Chem. 2019, 62 (6), 3163−3168.
(7) Steiger, A. K.; Yang, Y.; Royzen, M.; Pluth, M. D. Bio-orthogonal
″Click and Release″ Donation of Caged Carbonyl Sulfide (COS) and
Hydrogen Sulfide (H2S). Chem. Commun. 2017, 53 (8), 1378−1380.
(8) (a) Wang, W.; Ji, X.; Du, Z.; Wang, B. Sulfur Dioxide Prodrugs:
Triggered Release of SO2 via a Click Reaction. Chem. Commun. 2017,
53 (8), 1370−1373. (b) Ji, X.; El-labbad, E. M.; Ji, K.; Lasheen, D. S.;
Serya, R. A. T.; Abouzid, K. A.; Wang, B. Click and Release: SO2
Prodrugs with Tunable Release Rates. Org. Lett. 2017, 19 (4), 818−
821.
(9) Zheng, Y.; Ji, X.; Yu, B.; Ji, K.; Gallo, D.; Csizmadia, E.; Zhu, M.;
Choudhury, M. R.; De La Cruz, L. K. C.; Chittavong, V.; Pan, Z.;
Yuan, Z.; Otterbein, L. E.; Wang, B. Enrichment-triggered prodrug
activation demonstrated through mitochondria-targeted delivery of
doxorubicin and carbon monoxide. Nat. Chem. 2018, 10 (7), 787−
794.
(10) (a) Motterlini, R.; Otterbein, L. E. The therapeutic potential of
carbon monoxide. Nat. Rev. Drug Discovery 2010, 9 (9), 728−743.
(b) Heinemann, S. H.; Hoshi, T.; Westerhausen, M.; Schiller, A.
Carbon monoxide-physiology, detection and controlled release. Chem.
Commun. 2014, 50 (28), 3644−3660.
(11) Wegiel, B.; Gallo, D.; Csizmadia, E.; Harris, C.; Belcher, J.;
Vercellotti, G. M.; Penacho, N.; Seth, P.; Sukhatme, V.; Ahmed, A.;
Pandolfi, P. P.; Helczynski, L.; Bjartell, A.; Persson, J. L.; Otterbein, L.
E. Carbon Monoxide Expedites Metabolic Exhaustion to Inhibit
Tumor Growth. Cancer Res. 2013, 73 (23), 7009−21.
(12) De La Cruz, L. K. C.; Benoit, S. L.; Pan, Z.; Yu, B.; Maier, R. J.;
Ji, X.; Wang, B. Click, Release, and Fluoresce: A Chemical Strategy for
a Cascade Prodrug System for Codelivery of Carbon Monoxide, a
Drug Payload, and a Fluorescent Reporter. Org. Lett. 2018, 20 (4),
897−900.
(13) Nikam, A.; Ollivier, A.; Rivard, M.; Wilson, J. L.; Mebarki, K.;
́
Martens, T.; Dubois-Rande, J.-L.; Motterlini, R.; Foresti, R. Diverse
Nrf2 Activators Coordinated to Cobalt Carbonyls Induce Heme
Oxygenase-1 and Release Carbon Monoxide in Vitro and in Vivo. J.
Med. Chem. 2016, 59 (2), 756−762.
(14) Soni, H.; Pandya, G.; Patel, P.; Acharya, A.; Jain, M.; Mehta, A.
A. Beneficial effects of carbon monoxide-releasing molecule-2
(CORM-2) on acute doxorubicin cardiotoxicity in mice: Role of
oxidative stress and apoptosis. Toxicol. Appl. Pharmacol. 2011, 253
(1), 70−80.
(15) (a) Schatzschneider, U. Novel lead structures and activation
mechanisms for CO-releasing molecules (CORMs). Br. J. Pharmacol.
2015, 172 (6), 1638−50. (b) Romao, C. C.; Blattler, W. A.; Seixas, J.
D
Org. Lett. XXXX, XXX, XXX−XXX