7
174
R. L. Halterman et al. / Tetrahedron Letters 50 (2009) 7172–7174
Table 1
Pinacol coupling/reduction of benzaldehyde in water
Entry
CrCl a
2
[PhCHO] (M)
Metal reductantb
Temp (°C)
Recovered PhCHO (%)
% dl-1c
%meso-1
% 2
dl-/meso-
1/2
1
2
3
4
5
6
7
8
9
0
1
2
3
0
0
5
10
25
5
10
25
5
10
25
10
10
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
1.25
1.25
1.25
0.25
0.25
3 equiv Zn
3 equiv Zn
3 equiv Zn
3 equiv Zn
3 equiv Zn
3 equiv Zn
3 equiv Zn
3 equiv Zn
3 equiv Zn
3 equiv Zn
3 equiv Zn
3 equiv Al
3 equiv Al
20
60
20
20
20
60
60
60
20
20
20
20
60
100
100
ca. 5
ca. 5
ca. 5
ca. 5
ca. 5
ca. 5
<1
<1
<1
90
ca. 5
0
0
0
0
0
0
—
—
—
—
18
14
25
19
20
6
15
14
21
n.d.
22
23
23
28
20
23
11
18
19
23
n.d.
25
59
63
47
61
57
83
67
67
56
n.d.
53
0.8
0.6
0.9
1.0
0.9
0.6
0.8
0.7
0.9
n.d.
0.9
0.7
0.6
0.8
0.7
0.8
0.2
0.5
0.5
0.8
n.d.
0.9
1
1
1
1
a
b
c
Mol % of CrCl
2
relative to benzaldehyde.
Equivalents of metal reductant relative to benzaldehyde.
Percentages of products as relative product abundance in 1H NMR spectrum (unreacted benzaldehyde not included in ratio).
Tetrahedron: Asymmetry 2000, 11, 3861–3865; (f) Bensari, A.; Renaud, J.-L.;
Riant, O. Org. Lett. 2001, 3, 3863–3865; (g) Groth, U.; Jeske, M. Angew. Chem., Int.
Ed. 2000, 39, 574–576; (h) Fukuzawa, S.-i.; Oura, I.; Shimizu, K.; Kato, M.;
Ogata, K.-i. Eur. J. Org. Chem. 2009, 2009, 716–720.
Acknowledgments
Support for this work from the Oklahoma Biofuels Center to R.L.
Halterman and K.M. Nicholas and an NSF EPSCOR fellowship to
S.M. are gratefully acknowledged.
7. (a) Matsukawa, S.; Hinakubo, Y. Org. Lett. 2003, 5, 1221–1223; (b) Wang, C.;
Pan, Y.; Wu, A. Tetrahedron 2007, 63, 429–434.
8
9
.
.
Xu, X.; Hirao, T. J. Org. Chem. 2005, 70, 8594–8596.
Smith, K. M. Coord. Chem. Rev. 2006, 250, 1023–1031.
References
10. General procedure for the catalytic pinacol coupling: A suspension of zinc powder
3.0 mmol, 196 mg) and CrCl (0.10 mmol, 12.3 mg) in water (4 mL) was stirred
at 20 °C for about 5 min under a nitrogen atmosphere. Distilled benzaldehyde
1.0 mmol, 100 L) was added to the mixture which was then stirred
(
2
1
.
(a) Hirao, T. Top. Curr. Chem. 2007, 279, 53–75; (b) Gansauer, A.; Bluhm, H.
Chem. Rev. 2000, 100, 2771–2788; (c) Chatterjee, A.; Joshi, N. N. Tetrahedron
(
l
vigorously for 20 h. (For the heated reactions, the reaction flask was placed
in a silicon oil bath at 60 °C immediately following the addition of the
benzaldehyde.) The reactions were quenched with 1 N HCl (5 mL), additional
water (4 mL) was added, and the mixture was extracted with ether
2
006, 62, 12137–12158.
2.
3.
4.
5.
Groth, U.; Junc, M.; Vogel, T. Chem. Eur. J. 2005, 11, 3127–3135.
Svatos, A.; Boland, W. Synlett 1998, 549–551.
Hirao, T.; Hatano, B.; Imamoto, Y.; Ogawa, A. J. Org. Chem. 1999, 64, 7665–7667.
Gansäuer, A.; Moschioni, M.; Bauer, D. Eur. J. Org. Chem. 1998, 1998, 1923–
(
3 Â 20 mL). The combined organic layers were dried with magnesium
sulfate and filtered. The filtrate was concentrated under reduced pressure to
1
927.
give the crude product mixture (ca. 90% mass recovery) which was analyzed by
6
.
(a) Gansäuer, A.; Lauterbach, T.; Bluhm, H.; Noltemeyer, M. Angew. Chem., Int.
Ed. 1999, 38, 2909–2910; (b) Halterman, R. L.; Zhu, C.; Chen, Z.; Dunlap, M. L.;
Khan, M. A.; Nicholas, K. M. Organometallics 2000, 19, 324–329; (c) Yang, H.;
Wang, H.; Zhu, C. J. Org. Chem. 2005, 72, 10029–10034; (d) Yang, H.; Wang, H.;
Zhu, C. J. Org. Chem. 2007, 72, 10029–10034; (e) Enders, D.; Ullrich, E. C.
1
3
H NMR spectroscopy in CDCl . The diagnostic benzylic hydrogen signals for
meso-1 at 4.84 ppm, dl-1 at 4.72 ppm, and benzyl alcohol at 4.67 ppm were
used in conjunction with the total aromatic region 7.1–7.35 ppm to calculate
product ratios.