ChemComm
Communication
Notes and references
1 (a) J. Liu, S. Z. Qiao, Q. H. Hu and G. Q. M. Lu, Small, 2011, 7, 425; (b) A.-H.
Lu, E. L. Salabas and F. Schu¨th, Angew. Chem., Int. ed., 2007, 46, 1222.
2 (a) K. M. L. Taylor-Pashow, J. D. Rocca, R. C. Huxford and W. Lin,
Chem. Commun., 2010, 46, 5832; (b) J. Liu, S. Z. Qiao, J. S. Chen,
X. W. Lou, X. Xing and G. Q. Lu, Chem. Commun., 2011, 47, 12578.
3 (a) T. Sen, A. Sebastianelli and I. J. Bruce, J. Am. Chem. Soc., 2006,
128, 7130; (b) Y. Deng, D. Qi, C. Deng, X. Zhang and D. Zhao, J. Am.
Chem. Soc., 2008, 130, 28.
4 (a) J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song,
W. K. Moon and T. Hyeon, Angew. Chem., Int. ed., 2008, 47, 8438;
(b) W. Zhao, J. Gu, L. Zhang, H. Chen and J. Shi, J. Am. Chem. Soc.,
2005, 127, 8916; (c) W. Zhao, H. Chen, Y. Li, L. Li, M. Lang and J. Shi,
Adv. Funct. Mater., 2008, 18, 2780.
5 (a) M. W. Ambrogio, C. R. Thomas, Y.-L. Zhao, J. I. Zink and
J. F. Stoddart, Acc. Chem. Res., 2011, 44, 903; (b) J. E. Lee, N. Lee,
T. Kim, J. Kim and T. Hyeon, Acc. Chem. Res., 2011, 44, 893;
(c) S. Giri, B. G. Trewyn, M. P. Stellmaker and V. S.-Y. Lin, Angew.
Chem., Int. ed., 2005, 44, 5038; (d) J. E. Lee, N. Lee, H. Kim, J. Kim,
S. H. Choi, J. H. Kim, T. Kim, I. C. Song, S. P. Park, W. K. Moon and
T. Hyeon, J. Am. Chem. Soc., 2010, 132, 552.
Fig. 3 Time-dependent product yield of the tandem deacetalization–Henry reaction
using MMAB and MMAB-SP catalysts. Reaction conditions: benzaldehyde
dimethyl acetal (1 mmol), nitromethane (5 mL), MMAB (30 mg) or MMAB-SP
(30 mg), 90 1C, 5 h.
¨
6 (a) A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann,
B. Spliethoff, B. Tesche, E. Bill, W. Kiefer and F. Schu¨th, Angew.
Chem., Int. Ed., 2004, 116, 4403; (b) M. Shokouhimehr, Y. Piao,
J. Kim, Y. Jang and T. Hyeon, Angew. Chem., Int. ed., 2007, 46, 7039.
7 L. Han, H. Wei, B. Tu and D. Zhao, Chem. Commun., 2011, 47, 8536.
8 (a) J. M. Thomas, R. Raja and D. W. Lewis, Angew. Chem., Int. ed.,
2005, 44, 6456; (b) F. Gelman, J. Blum and D. Avnir, Angew. Chem.,
Int. Ed., 2001, 40, 3647.
completion. This dramatic increase in the reaction rate for the
larger pore-sized silica materials can be explained by internal
pore diffusion.16,17 Internal pore diffusivity, which is a function of
Knudsen diffusivity, is known to increase as pore sizes increase for
diffusion-controlled reactions.16 Because we synthesized MMAB
and MMAB-SP using nearly identical procedures with a similar
loading of the catalytic functional groups (Table S1, ESI†), the
different catalytic activity can be explained solely by the difference
in pore size.
9 (a) B. Kesanli and W. Lin, Chem. Commun., 2004, 2284; (b) C. Perego
and R. Millini, Chem. Soc. Rev., 2013, 42, 3956.
10 (a) E. L. Margelefsky, R. K. Zeidan and M. E. Davis, Chem. Soc. Rev.,
2008, 37, 1118; (b) N. R. Shiju, A. H. Alberts, S. Khalid, D. R. Brown
and G. Rothenberg, Angew. Chem., Int. Ed., 2011, 50, 9615.
11 (a) L. Zhang, Y. Guo, J. Peng, X. Liu, P. Yuan, Q. Yang and C. Li,
Chem. Commun., 2011, 47, 4087; (b) Y. Li, H. Xia, F. Fan, Z. Feng,
R. a. van Santen, E. J. M. Hensen and C. Li, Chem. Commun., 2008,
774; (c) Y. Yang, X. Liu, X. Li, J. Zhao, S. Bai, J. Liu and Q. Yang,
Angew. Chem., Int. ed., 2012, 51, 9164.
In conclusion, we have successfully synthesized a magnetically
separable mesoporous site-isolated acid–base catalyst using a one-
pot reaction. The catalyst showed excellent performance with very
high yield and selectivity for the conversion of benzaldehyde
dimethyl acetal to 1-nitro-2-phenylethylene via benzaldehyde
using tandem acid-catalyzed deacetalization and base-catalyzed
Henry reaction. The catalyst could be easily recovered by using a
magnet and dispersed in subsequent reaction mixtures, enabling
recycling of the catalyst for up to five uses without losing catalytic
activity. Furthermore, comparative studies revealed that the
larger-pore-sized materials exhibited higher catalytic activity
than the smaller-pore-sized materials. We believe that the
current synthetic approach for this magnetic mesoporous
acid–base site-isolated catalyst will contribute to the practical
applications of tandem catalysts.
12 (a) K. K. Sharma, A. Anan, R. P. Buckley, W. Ouellette and T. Asefa,
J. Am. Chem. Soc., 2008, 130, 218; (b) J. D. Bass, A. Solovyov,
A. J. Pascall and A. Katz, J. Am. Chem. Soc., 2006, 128, 3737;
(c) K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani and
K. Kaneda, J. Am. Chem. Soc., 2005, 127, 9674; (d) F. Shang, J. Sun,
S. Wu, H. Liu, J. Guan and Q. Kan, J. Colloid Interface Sci., 2011,
355, 190.
13 R. Massart, IEEE Trans. Magn., 1981, 17, 1247.
14 (a) R. Zeidan, V. Dufaud and M. Davis, J. Catal., 2006, 239, 299;
(b) S. Shylesh, A. Wagner, A. Seifert, S. Ernst and W. R. Thiel,
Chem.–Eur. J., 2009, 15, 7052.
15 C. T. Yavuz, J. T. Mayo, W. W. Yu, A. Prakash, J. C. Falkner, S. Yean,
L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson and
V. L. Colvin, Science, 2006, 314, 964.
16 (a) M. Shimura, Y. Shiroto and C. Takeuchi, Ind. Eng. Chem.
Fundam., 1986, 25, 330; (b) H. Takahashi, B. Li, T. Sasaki,
C. Miyazaki, T. Kajino and S. Inagaki, Chem. Mater., 2000,
12, 3301; (c) M. Iwamoto, Y. Tanaka, N. Sawamura and S. Namba,
J. Am. Chem. Soc., 2003, 125, 13032.
17 (a) J. T. Richardson, Principles of Catalyst Development, Plenum
Press, New York, 1989; (b) H. S. Fogler, Elements of Chemical Reaction
Engineering, Prentice-Hall, New Jersey, 3rd edn, 1999.
We acknowledge financial support from the Research Center
Program of Institute for Basic Science (IBS) in Korea.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.