ACS Catalysis
Letter
(5) Qi, B.; Lu, X. H.; Zhou, D.; Xia, Q. H.; Tang, Z. R.; Fang, S. Y.;
Pang, T.; Dong, Y. L. J. Mol. Catal. A: Chem. 2010, 322, 73−79.
(6) Mandelli, D.; Vliet, M. C. A.; Sheldon, R. A.; Schuchardt, U. Appl.
Catal., A 2001, 219, 209−213.
containing the β-oxygen were hopping toward another adjacent
ortho-carbon, which is positively charged (average 0.21 eV) and
with delocalized spin density. As a result, the epoxide is formed
(Figure 5c), and the terminal hydroxyls jumped and were
accommodated on the adjacent ortho-carbon (Figure 5c, II).
The reaction is exothermic (−1.85 eV) with a moderate barrier
of 0.61 eV. Significantly, the surface reactive oxygen species can
be recovered by the reaction between TBHP and the surface
hydroxyls groups (with a barrier of 0.5 eV, Figure 5d-f), which
completed the reaction cycle. It is worth noting that the three
ortho-carbons around the center nitrogen atom are equivalent
in geometric and electronic properties. Although the formation
of reactive oxygen species was governed by the modulated
electronic structure of the N-doped graphene catalysts, the
unique geometric feature described here renders the
epoxidation, particularly the transferring/hopping of hydroxyls
and the successive recycling of the reactive oxygen species,
possible. This is pivotal for the current metal-free epoxidation
reaction system.
In conclusion, nitrogen-doped graphene catalysts synthesized
through a simple ammonia high-temperature treatment method
were demonstrated to be very active for the C−C double bond
epoxidation reaction. It is the unique property of the nitrogen
dopants at the quaternary site that confers the material the
outstanding catalytic activity. This is the first report of the
epoxidation reaction using nonmetal, graphene-based catalytic
systems, which, once fully developed, is believed to be a very
promising invention as an alternative technology to the metal-
based catalysts.
(7) Gelalcha, F. G.; Bitterlich, B.; Anilkumar, G.; Tse, M. K.; Beller,
M. Angew. Chem., Int. Ed. 2007, 46, 7293−7296.
(8) Ding, Z. X.; Chen, X. F.; Antonietti, M.; Wang, X. C.
ChemSusChem. 2011, 4, 274−281.
(9) Schroder, K.; Join, B.; Amali, A. J.; Junge, K.; Ribas, X.; Costas,
̈
M.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 1425−1429.
(10) Patil, N. S.; Uphade, B. S.; Jana, P.; Bharagava, S. K.; Choudhary,
V. R. J. Catal. 2004, 223, 236−239.
(11) Tang, Q. H.; Hu, S. Q.; Chen, Y. T.; Guo, Z.; Hu, Y.; Chen, Y.;
Yang, Y. H. Microporous Mesoporous Mater. 2010, 132, 501−509.
(12) Zhan, W. C.; Guo, Y. L.; Wang, Y. Q.; Guo, Y.; Liu, X. H.;
Wang, Y. S.; Zhang, Z. G.; Lu, G. Z. J. Phys. Chem. C 2009, 113, 7181−
7185.
(13) Zhuang, J. Q.; Yang, G.; Ma, D.; Lan, X. J.; Liu, X. M.; Han, X.
M.; Bao, X. H.; Mueller, U. Angew. Chem., Int. Ed. 2004, 43, 6377−
6381.
(14) Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei,
F.; CarlosIdrobo, J.; Pennycook, S. J.; Dai, H. J. Nat. Nanotechnol.
2012, 7, 394−400.
(15) Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.;
Regier, T.; Dai, H. J. Nat. Mater. 2010, 10, 780−786.
(16) Wang, H. L.; Yang, Y.; Liang, Y. Y.; Zheng, G. Y.; Li, Y. G.; Cui,
Y.; Dai, H. J. Energy Environ. Sci. 2012, 5, 7931−7935.
(17) Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. J. Am.
Chem. Soc. 2010, 132, 7472−7477.
(18) Gao, Y. J.; Ma, D.; Hu, G.; Zhai, P.; Bao, X. H.; Zhu, B.; Zhang,
B. S.; Su, D. S. Angew. Chem., Int. Ed. 2011, 50, 10236−10240.
(19) Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Chen, Z.; Dai, H. J.
Nano Res. 2010, 3, 701−705.
ASSOCIATED CONTENT
■
(20) Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang,
H. L.; Guo, J.; Dai, H. J. Science 2009, 324, 768−771.
(21) Zhao, M.; Huang, Y. H.; Ma, F.; Hu, T. W.; Xu, K. W.; Chu, P.
K. J. Appl. Phys. 2013, 114, 063707.
S
* Supporting Information
Experimental procedures, the effects of different reaction
conditions, as well as the iron impurity on the epoxidation
catalytic activity. Figures S1−S4 and Tables S1−S2. This
material is available free of charge via the Internet at http://
(22) Zhang, J.; Liu, X.; Blume, R.; Zhang, A. H.; Schlogl, R.; Su, D. S.
̈
Science 2008, 322, 73−77.
(23) Frank, B.; Zhang, J.; Blume, R.; Schlogl, R.; Su, D. S. Angew.
̈
Chem., Int. Ed. 2009, 48, 6913−6917.
(24) Wang, Y.; Zhang, J. S.; Wang, X. C.; Antonietti, M.; Li, H. R.
Angew. Chem., Int. Ed. 2010, 49, 3356−3359.
(25) Gao, Y. J.; Ma, D.; Wang, C. L.; Guan, J.; Bao, X. H. Chem.
Commun. 2011, 47, 2432−2434.
AUTHOR INFORMATION
■
Corresponding Authors
*Phone: +86-571-88871037. Fax: +86-571-88871037. E-mail:
*Phone: +86-10-62758603. Fax: +86-10-62758603. E-mail:
(26) Dreyer, D. R.; Jarvis, K. A.; Ferreira, P. J.; Bielawski, C. W.
Polym. Chem. 2012, 3, 757−766.
(27) Dreyer, D. R.; Jarvis, K. A.; Ferreira, P. J.; Bielawski, C. W.
Macromolecules 2011, 44, 7659−7667.
Notes
(28) Dreyer, D. R.; Jia, H. P.; Bielawski, C. W. Angew. Chem., Int. Ed.
2010, 49, 6813−6816.
The authors declare no competing financial interest.
(29) Long, J. L.; Xie, X. Q.; Xu, J.; Gu, Q.; Chen, L. M.; Wang, X. X.
ACS Catal. 2012, 2, 622−631.
ACKNOWLEDGMENTS
■
(30) Li, X. H.; Antonietti, M. Angew. Chem., Int. Ed. 2013, 52, 4572−
4576.
This work received financial support from the 973 Project
(2013CB933100, 2011CB201402, 2013CB733501) and Natu-
ral Science Foundation of China (21173009, 21222306,
91334013).
(31) Gao, Y. J.; Hu, G.; Zhong, J.; Shi, Z. J.; Zhu, Y. S.; Su, D. S.;
Wang, J. G.; Bao, X. H.; Ma, D. Angew. Chem., Int. Ed. 2013, 52, 2109−
2133.
(32) Jia, H. P.; Dreyer, D. R.; Bielawski, C. W. Tetrahedron 2011, 67,
4431−4434.
REFERENCES
■
(33) Yang, J. H.; Sun, G.; Gao, Y. J.; Zhao, H. B.; Tang, P.; Tan, J.;
Lu, A. H.; Ma, D. Energy Environ. Sci. 2013, 6, 793−798.
(34) Li, X. L.; Wang, H. L.; Robinson, J. T.; Sanchez, H.; Diankov,
G.; Dai, H. J. J. Am. Chem. Soc. 2009, 131, 15939−15944.
(35) Lin, C. Y.; Lin, C. Y.; Chiu, P. W. Appl. Phys. Lett. 2010, 96,
133110 (1−3).
(1) Pavel, O. D.; Cojocaru, B.; Angelescu, E.; Par
Catal., A 2011, 403, 83−90.
̂
vulescu, V. I. Appl.
(2) Murphy, A.; Dubois, G.; Stack, T. D. P. J. Am. Chem. Soc. 2003,
125, 5250−5251.
(3) Zhang, Q. H.; Wang, Y.; Itsuki, S.; Shishido, T.; Takehira, K. J.
Mol. Catal. A: Chem. 2002, 188, 189−200.
(36) Sharifi, T.; Hu, G. Z.; Jia, X. E.; Wagberg, T. ACS Nano 2012, 6,
8904−8912.
(4) Lignier, P.; Morfin, F.; Mangematin, S.; Massin, L.; Rousset, J. L.;
Caps, V. Chem. Commun. (Cambridge) 2007, 186−188.
1265
dx.doi.org/10.1021/cs500062s | ACS Catal. 2014, 4, 1261−1266