Journal of the American Chemical Society
Communication
(5) (a) Lu, J. L.; Fu, B. S.; Kung, M. C.; Xiao, G. M.; Elam, J. W.;
Kung, H. H.; Stair, P. C. Science 2012, 335, 1205. (b) Chan-Thaw, C.
E.; Villa, A.; Katekomol, P.; Su, D. S.; Thomas, A.; Prati, L. Nano Lett.
2010, 10, 537.
(6) (a) Arnal, P. M.; Comotti, M.; Schuth, F. Angew. Chem., Int. Ed.
2006, 45, 8224. (b) Liu, J.; Yang, H. Q.; Kleitz, F.; Chen, Z. G.; Yang,
T. Y.; Strounina, E.; Lu, G. Q.; Qiao, S. Z. Adv. Funct. Mater. 2012, 22,
591. (c) Huang, X. Q.; Tang, S. H.; Liu, B. J.; Ren, B.; Zheng, N. F.
Adv. Mater. 2011, 23, 3420.
(7) Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao,
H. J.; Pennycook, S. J.; Dai, S. Angew. Chem., Int. Ed. 2011, 50, 6799.
(8) (a) Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Angew. Chem.,
Int. Ed. 2010, 49, 4981. (b) Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.;
Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711.
(c) Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q.
Chem. Commun. 2011, 47, 12578.
(9) (a) Nie, X. T.; Qian, H. F.; Ge, Q. J.; Xu, H. Y.; Jin, R. C. ACS
Nano 2012, 6, 6014. (b) Ma, G. C.; Binder, A.; Chi, M. F.; Liu, C.; Jin,
R. C.; Jiang, D. E.; Fan, J.; Dai, S. Chem. Commun. 2012, 48, 11413.
(10) (a) Duan, R. X.; Zuo, X. L.; Wang, S. T.; Quan, X. Y.; Chen, D.
L.; Chen, Z. F.; Jiang, L.; Fan, C. H.; Xia, F. J. Am. Chem. Soc. 2013,
135, 4604. (b) Schmit, V. L.; Martoglio, R.; Scott, B.; Strickland, A. D.;
Carron, K. T. J. Am. Chem. Soc. 2012, 134, 59.
during the heterogeneous catalysis, while the microporous shell
around the encapsulated metal clusters allows the small size
reactant to freely access to the encapsulated metal sites.
Moreover, the protective microporous shells could prevent
aggregation of the metal nanoparticles.
In conclusion, we have demonstrated a versatile lab-in-a-shell
strategy to encapsulate various clusters within hollow silica
nanospheres in a controllable way. This strategy is applicable to
a broad range of clusters in non-agglomerated fashion and is
capable of controlling the spatial distribution of clusters within
the hollow silica matrix. On the basis of the characterization of
their core−shell structure, the catalytic properties were
explored in the solvent-free aerobic oxidation of hydrocarbons
and alcohols, and the core−shell nanospheres were shown to
have excellent catalytic activity with unexpected size selectivity,
high thermal stability, and good recyclability. It is expected that
such metal cluster@silica core−shell nanoreactors will serve as
a useful platform to control substrate orientation and reactivity
in heterogeneous catalysis as the diffusion of reactants and
morphology of active catalysts can readily be manipulated
through rational catalyst design. We believe the synthesis
strategy reported here may open up new opportunities for
preparing core−shell structured nanomaterials with various
compositions.
(11) Qiao, Z. A.; Huo, Q. S.; Chi, M. F.; Veith, G. M.; Binder, A. J.;
Dai, S. Adv. Mater. 2012, 24, 6017.
(12) (a) Schalow, T.; Brandt, B.; Starr, D. E.; Laurin, M.;
Shaikhutdinov, S. K.; Schauermann, S.; Libuda, J.; Freund, H. J.
Angew. Chem., Int. Ed. 2006, 45, 3693. (b) Davis, S. E.; Ide, M. S.;
Davis, R. J. Green Chem. 2013, 15, 17. (c) Johnston, E. V.; Verho, O.;
Karkas, M. D.; Shakeri, M.; Tai, C. W.; Palmgren, P.; Eriksson, K.;
Oscarsson, S.; Backvall, J. E. Chem.Eur. J. 2012, 18, 12202.
(13) (a) Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.
Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G.; DuChene, J. S.; Zhang,
H.; Zhang, Q. C.; Chen, X. D.; Ma, J.; Loo, S. C. J.; Wei, W. D.; Yang,
Y. H.; Hupp, J. T.; Huo, F. W. Nat. Chem. 2012, 4, 310. (b) Shang, Z.
Y.; Patel, R. L.; Evanko, B. W.; Liang, X. H. Chem. Commun. 2013, 49,
10067. (c) Rajagopalan, R.; Ponnaiyan, A.; Mankidy, P. J.; Brooks, A.
W.; Yi, B.; Foley, H. C. Chem. Commun. 2004, 2498.
(14) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851.
(15) (a) Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.;
Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.;
Hutchings, G. J. Science 2006, 311, 362. (b) Zhang, P. F.; Gong, Y. T.;
Li, H. R.; Chen, Z. R.; Wang, Y. Nat. Commun. 2013, 4, 1593.
(c) Kotani, M.; Koike, T.; Yamaguchia, K.; Mizuno, N. Green Chem.
2006, 8, 735. (d) Prati, L.; Porta, F.; Wang, D.; Villa, A. Catal. Sci.
Technol. 2011, 1, 1624. (e) Chen, Y.; Wang, H.; Liu, C.; Zeng, Z.;
Zhang, H.; Zhou, C.; Jia, X.; Yang, Y. J. Catal. 2012, 289, 105.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and additional figures. This material is
■
S
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the U.S. Department of Energy,
Office of Science, Basic Energy Sciences, Chemical Sciences,
Geosciences, and Biosciences Division. A portion of this
research was conducted at the Center for Nanophase Materials
Sciences, which is sponsored at Oak Ridge National Laboratory
by the Division of Scientific User Facilities, Office of Basic
Energy Sciences, U.S.
REFERENCES
■
(1) (a) Abad, A.; Concepcion, P.; Corma, A.; Garcia, H. Angew.
Chem., Int. Ed. 2005, 44, 4066. (b) Kesavan, L.; Tiruvalam, R.; Ab
Rahim, M. H.; bin Saiman, M. I.; Enache, D. I.; Jenkins, R. L.;
Dimitratos, N.; Lopez-Sanchez, J. A.; Taylor, S. H.; Knight, D. W.;
Kiely, C. J.; Hutchings, G. J. Science 2011, 331, 195. (c) Mori, K.; Hara,
T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126,
10657.
(2) (a) Bell, A. T. Science 2003, 299, 1688. (b) Zheng, N. F.; Stucky,
G. D. J. Am. Chem. Soc. 2006, 128, 14278. (c) Corma, A. Chem. Rev.
1997, 97, 2373.
(3) (a) Chen, C.; Nan, C. Y.; Wang, D. S.; Su, Q. A.; Duan, H. H.;
Liu, X. W.; Zhang, L. S.; Chu, D. R.; Song, W. G.; Peng, Q.; Li, Y. D.
Angew. Chem., Int. Ed. 2011, 50, 3725. (b) Do, P. T. M.; Foster, A. J.;
Chen, J. G.; Lobo, R. F. Green Chem. 2012, 14, 1388.
(4) (a) Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.;
Somorjai, G. A. Nat. Mater. 2009, 8, 126. (b) Datta, K. K. R.; Reddy, B.
V. S.; Ariga, K.; Vinu, A. Angew. Chem., Int. Ed. 2010, 49, 5961.
D
dx.doi.org/10.1021/ja505903r | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX