Organic & Biomolecular Chemistry
Communication
111, 43–48; (l) K. Itoh, N. Hamaguchi, M. Miura and
M. Nomura, J. Mol. Catal., 1992, 75, 117–122; (m) B. E. Ali
and H. Alper, J. Org. Chem., 1991, 56, 5357–5360;
(n) Y. Masuyama, J. P. Takahara and Y. Kurusu, J. Am. Chem.
Soc., 1988, 110, 4473–4474; (o) J. F. Knifton, J. Organomet.
Chem., 1980, 188, 223–236; (p) J. Tsuji, J. Kiji, S. Imamura
and M. Morikawa, J. Am. Chem. Soc., 1964, 86, 4350–
4353.
Acknowledgements
This research was supported by the National Natural Science
Foundation of China (21790333, 21925111, 21672199 and
21702197). We also thank the Chinese Academy of Sciences,
“Light of West China” Program.
6 For selected reviews on hydroxyl group with poor leaving
ability: (a) Q. Wang, Y. Su, L. Li and H. Huang, Chem. Soc.
Rev., 2016, 45, 1257–1272; (b) R. Ferracciolia and
L. Pignataroa, Curr. Org. Chem., 2015, 19, 106–120;
(c) J. Muzart, Eur. J. Org. Chem., 2007, 3077–3089;
(d) Y. Tamaru, Eur. J. Org. Chem., 2005, 2647–2656;
(e) J. Muzart, Tetrahedron, 2005, 61, 4179–4212.
Notes and references
1 For selected examples on bioactive quinolizinone deriva-
tives: (a) S. D. Kuduk, R. K. Chang, C. N. Di Marco, W. J. Ray,
J. Ma, M. Wittmann, M. A. Seager, K. A. Koeplinger,
C. D. Thompson, G. D. Hartman and M. T. Bilodeau, ACS
Med. Chem. Lett., 2010, 1, 263–267; (b) Y.-S. Xu, C.-C. Zeng,
Z.-G. Jiao, L.-M. Hu and R. Zhong, Molecules, 2009, 14, 868– 7 For selected examples on additive for improving the leaving
883; (c) J. M. Hwang, H. C. Kuo, T. H. Tseng, J. Y. Liu and
C. Y. Chu, Arch. Toxicol., 2006, 80, 62–73; (d) J. R. Martin,
J.-L. Moreau and F. Jenck, Drug Dev. Res., 1995, 36, 141–149.
2 For selected examples on multi-step synthesized methods of
quinolizinones: (a) T. A. Alanine, W. R. J. D. Galloway,
T. M. McGuire and D. R. Spring, Eur. J. Org. Chem., 2014,
5767–5776; (b) C. W. Muir, A. R. Kennedy, J. M. Redmond
ability of hydroxyl group: (a) Q. Liu, L. Wu, H. Jiao, X. Fang,
R. Jackstell and M. Beller, Angew. Chem., Int. Ed., 2013, 52,
8064–8068; (b) F. Ozawa, H. Okamoto, S. Kawagishi,
S. Yamamoto, T. Minami and M. Yoshifuji, J. Am. Chem.
Soc., 2002, 124, 10968–10969; (c) M. Sakamoto, I. Shimizu
and A. Yamamoto, Bull. Chem. Soc. Jpn., 1996, 69, 1065–
1078.
and A. J. B. Watson, Org. Biomol. Chem., 2013, 11, 3337– 8 For examples on palladium-catalyzed carbonylation and allyl
3340; (c) W. Eberbach and W. Maier, Tetrahedron Lett., 1989,
30, 5591–5594; (d) R. Adams and W. Reifschneider, J. Am.
Chem. Soc., 1959, 81, 2537–2541; (e) R. Adams and
S. Miyano, J. Am. Chem. Soc., 1954, 76, 3168–3171;
(f) V. Boekelheide and J. P. Lodge, Jr., J. Am. Chem. Soc.,
1951, 73, 3681–3684.
3 Our reported works on palladium-catalyzed carbonylation
for synthesis of quinolizinones: (a) X. Zhou, A. Chen, W. Du,
Y. Wang, Y. Peng and H. Huang, Org. Lett., 2019, 21, 9114–
9118; (b) H. Yu, G. Zhang and H. Huang, Angew. Chem., Int.
Ed., 2015, 54, 10912–10916.
alcohol conversion reactions from our group: (a) B. Yu,
H. Yu and H. Huang, Org. Lett., 2020, 22, 8962–8966;
(b) B. Gao, S. Zou, G. Yang, Y. Ding and H. Huang, Chem.
Commun., 2020, 56, 12198–12201; (c) X. Zhou, Y. Ding and
H. Huang, Chem. – Asian J., 2020, 15, 1678–1682; (d) S. Zou,
B. Gao, Y. Huang, T. Zhang and H. Huang, Org. Lett., 2019,
21, 6333–6336; (e) J. Li, S. Wang, S. Zou and H. Huang,
Commun. Chem., 2019, 2, 14–22; (f) B. Gao, G. Zhang,
X. Zhou and H. Huang, Chem. Sci., 2018, 9, 380–386;
(g) X. Zhou, G. Zhang, B. Gao and H. Huang, Org. Lett.,
2018, 20, 2208–2212; (h) X. Ji, B. Gao, X. Zhou, Z. Liu and
H. Huang, J. Org. Chem., 2018, 83, 10134–10141; (i) Y. Hu
and H. Huang, Org. Lett., 2017, 19, 5070–5073; ( j) B. Gao
and H. Huang, Org. Lett., 2017, 19, 6260–6263; (k) J. Zhu,
B. Gao and H. Huang, Org. Biomol. Chem., 2017, 15, 2910–
2913; (l) Y. Hu, Z. Shen and H. Huang, ACS Catal., 2016, 6,
6785–6789; (m) B. Gao, S. Liu, Y. Lan and H. Huang,
Organometallics, 2016, 35, 1480–1487; (n) G. Zhang, X. Ji,
H. Yu, L. Yang, P. Jiao and H. Huang, Tetrahedron Lett.,
2016, 57, 383–386; (o) G. Zhang, B. Gao and H. Huang,
Angew. Chem., Int. Ed., 2015, 54, 7657–7661.
4 Z. Xie, S. Luo and Q. Zhu, Chem. Commun., 2016, 52, 12873–
12876.
5 For selected examples on palladium-catalyzed carbonylation
of allyl alcohol for the synthesis of acid, ester, lactone and
linear amide: (a) J. Yang, J. Liu, Y. Ge, W. Huang,
H. Neumann, R. Jackstell and M. Beller, Angew. Chem., Int.
Ed., 2020, 59, 20394–20398; (b) S. Padmanaban, J. Jiang and
S. Yoon, Organometallics, 2020, 39, 1881–1886; (c) J.-B. Peng,
L.-C. Wang and X.-F. Wu, Tetrahedron Lett., 2019, 60,
150991–150994; (d) F.-P. Wu, J.-B. Peng, L.-Y. Fu, X. Qi and
X.-F. Wu, Org. Lett., 2017, 19, 5474–5477; (e) H. Li, 9 For selected examples on the reduction of Pd(II) to Pd(0) by
H. Neumann and M. Beller, Chem. – Eur. J., 2016, 22, 10050–
10056; (f) Q. Liu, L. Wu, H. Jiao, X. Fang, R. Jackstell and
M. Beller, Angew. Chem., Int. Ed., 2013, 52, 8064–8068;
(g) W.-J. Xiao and H. Alper, J. Org. Chem., 1998, 63, 7939–
7944; (h) M. Brunner and H. Alper, J. Org. Chem., 1997, 62,
7565–7568; (i) T. Satoh, M. Ikeda, Y. Kushino, M. Miura and
M. Nomura, J. Org. Chem., 1997, 62, 2662–2664; ( j) T. Satoh,
M. Ikeda, Y. Kushino, M. Miura and M. Nomura, J. Org.
Chem., 1997, 62, 2662–2664; (k) B. Gabriele, G. Salerno,
M. Costa and G. P. Chiusoli, J. Mol. Catal. A: Chem., 1996,
phosphine ligand: (a) H. Wang and X.-F. Wu, Org. Lett.,
2019, 21, 5264–5268; (b) K. W. Dong, R. Sang, Z. H. Wei,
J. Liu, R. Duhren, A. Spannenberg, H. J. Jiao, H. Neumann,
R. Jackstell, R. Franke and M. Beller, Chem. Sci., 2018, 9,
2510–2516; (c) C. Amatore, E. Carre and M. A. M’Barki,
Organometallics, 1995, 14, 1818–1826; (d) C. Amatore,
E. Blart, J. P. Genet, A. Jutand, S. Lemaire-Audoire and
M. Savignac, J. Org. Chem., 1995, 60, 6829–6839;
(e) C. Amatore, A. Jutand and M. A. M’Barki,
Organometallics, 1992, 11, 3009–3013.
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 1274–1277 | 1277