Communication
RSC Advances
Notes and references
¨
1 Modern Oxidation Methods, ed. J. E. Backvall, Wiley-VCH,
Weinheim, 2010.
2 S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan and
D. H. B. Ripin, Chem. Rev., 2006, 106, 2943.
3 (a) A. J. Fatiadi, Synthesis, 1976, 65; (b) K. B. Sharpless and
K. Akashi, J. Am. Chem. Soc., 1975, 97, 5927; (c) K. Omura,
A. K. Sharma and D. Swern, J. Org. Chem., 1976, 41, 957; (d)
E. J. Corey and G. Schmidt, Tetrahedron Lett., 1979, 399.
4 (a) M. C. White, Science, 2012, 335, 807; (b) C.-L. Sun, B.-J. Li
and Z.-J. Shi, Chem. Rev., 2011, 111, 1293; (c) M. Darwish and
M. Wills, Catal. Sci. Technol., 2012, 2, 243; (d) A. M. Kirillov
and G. B. Shul’pin, Coord. Chem. Rev., 2013, 257, 732; (e)
E. P. Talsi and K. P. Bryliakov, Coord. Chem. Rev., 2012,
256, 1418.
5 (a) S. Rachmilovich-Calis, A. Masarwa, D. Meyerstein and
R. van Eldik, Chem.–Eur. J., 2009, 15, 8303; (b) D. T. Sawyer,
A. Sbkowiak and T. Matsushita, Acc. Chem. Res., 1996, 29,
409.
6 D. H. R. Barton, Tetrahedron, 1998, 54, 5805.
7 (a) D. Doller, S. Chackalamannil, A. Stamford, B. McKittrick
and M. Czarniecki, Bioorg. Med. Chem. Lett., 1997, 7, 1381; (b)
I. Okamoto, W. Funaki, K. Nakaya, E. Kotani and T. Takeya,
Chem. Pharm. Bull., 2004, 52, 756.
Scheme 2 Selective oxidation of diols 8 and 10 by iron-picolinate
catalysts. cat A: Fe(OAc)2 (5 mol%) + Me-PicH (20 mol%), cat B:
Fe(OAc)2 (5 mol%) + PicH (5 mol%) + Me-PicH (5 mol%).
With two types of iron-picolinate catalysts in hand, the selective
oxidation reactions of diol substrates were examined. 1-Phenyl-1,2-
ethanediol 8 was converted to b-hydroxyacetophenone 9 in 40%
yield with 91% selectivity by catalyst B, although catalyst A showed
low catalytic activity as well as selectivity for 9 (Scheme 2). In
contrast, catalyst A displayed high selectivity for oxidation of 4-(1-
hydroxy-1-phenylmethyl)benzylalcohol 10, giving 4-(1-hydroxy-1-
phenylmethyl)benzaldehyde 11 in 77% yield with 91% selectivity.
Secondary alcohol selective oxidations of 8 using environmentally
benign methods have been achieved by W–Zn22 and Fe12c,23 cata-
lysts with hydrogen peroxide, while Cu catalysts with oxygen were
required for primary alcohol selective oxidation of a regioisomer of
10.11c In our catalyst system, both of these diol substrates were
oxidized with high selectivity by a combination of hydrogen
peroxide and iron-picolinate, in which a suitable ligand system
could be easily tuned by changing the ratio of picolinic acids.
8 G. Balavoine, D. H. R. Barton, J. Boivin and A. Gref,
Tetrahedron Lett., 1990, 31, 659.
9 P. Stavropoulos, R. Celenligil-Cetin and A. E. Tapper, Acc.
Chem. Res., 2001, 34, 745.
´
10 Recent examples(a) I. Prat, L. Gomez, M. Canta, X. Ribas and
M. Costas, Chem.–Eur. J., 2013, 19, 1908; (b) Y. Hitomi,
K. Arakawa, T. Funabiki and M. Kodera, Angew. Chem., Int.
Ed., 2012, 51, 3448; (c) M. S. Chen and M. C. White,
Science, 2010, 327, 566.
Conclusions
In summary, we achieved chemoselective oxidation of allylic
alcohols to a,b-unsaturated carbonyl compounds by a combi-
nation of hydrogen peroxide and iron-picolinate complexes,
which was a modied GoAggIII system by addition of Me-PicH in
a suitable ratio instead of pyridine and PicH. The catalyst
prepared by simple mixing of Fe(OAc)2 with Me-PicH or PicH
and Me-PicH efficiently converted allylic alcohols to a,b-unsat-
urated carbonyl compounds with good selectivity. Although
investigation of the reaction mechanism is still underway, steric
hindrance of the two picolinate ligands around the high-valent
iron-oxo species might affect the selectivity of reaction path-
ways. In our system, a metal-based oxidant suitable for a
substrate could be tuned simply by changing the kind or ratio of
commercially available picolinic acids. Because the preparation
of sterically and/or electronically tuned ligands could be avoi-
ded, this system should be a good candidate for a practical iron-
based chemoselective oxidation catalyst.
11 (a) Y. Kon, Y. Usui and K. Sato, Chem. Commun., 2007, 4399;
(b) J. M. Hoover and S. S. Stahl, J. Am. Chem. Soc., 2011, 133,
16901; (c) R. Anderson, K. Griffin, P. Johnston and
P. L. Alsters, Adv. Synth. Catal., 2003, 345, 517.
¨
¨
¨
12 (a) B. Join, K. Moller, C. Ziebart, K. Schroder, D. Gordes,
K. Thurow, A. Spannenberg, K. Junge and M. Beller, Adv.
Synth. Catal., 2011, 353, 3023; (b) H. Hosseini-Monfared,
¨
C. Nather, H. Winkler and C. Janiak, Inorg. Chim. Acta,
¨ ¨
2012, 391, 75; (c) B. Biswas, A. Al-Hunaiti, M. T. Raisanen,
¨
S. Ansalone, M. Leskela, T. Repo, Y.-T. Chen, H.-L. Tsai,
A. D. Naik, A. P. Railliet, Y. Garcia, R. Ghosh and N. Kole,
Eur. J. Inorg. Chem., 2012, 4479.
13 (a) T. Hori and K. B. Sharpless, J. Org. Chem., 1978, 43, 1689;
(b) C. Venturello and M. Gambaro, J. Org. Chem., 1991, 56,
5924; (c) P. Kumar, R. Kumar and B. Pandey, Synlett, 1995,
289; (d) I. W. C. E. Arends, R. A. Sheldon, M. Wallau and
U. Schuchardt, Angew. Chem., Int. Ed. Engl., 1997, 36, 1144;
(e) T. Tatsumi, K. A. Koyano and N. Igarashi, Chem.
Commun., 1998, 325.
14 B. Bitterlich, G. Anikumar, F. G. Gelalcha, B. Spilker,
A. Grotevendt, R. Jackstell, M. K. Tse and M. Beller, Chem.–
Asian J., 2007, 2, 521.
Acknowledgements
This work was partially supported by the New Energy and
Industrial Technology Development Organization (NEDO),
Japan. We thank Yumiko Uesaka for technical support.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 37674–37678 | 37677