Deussen, E. Abbate, V. Galinyte and P. Schneider, Appl. Environ.
Microbiol., 2000, 66, 2052–2056; (c) F. Xu, W. Shin, S. H. Brown,
J. A. Wahleithner, U. M. Sundaram and E. I. Solomon, Biochim.
Biophys. Acta, 1996, 1292, 303–311; (d ) K. Li, F. Xu and K.-E. L.
Eriksson, Appl. Environ. Microbiol., 1999, 65, 2654–2660.
(a) H. E. Schoemaker, Recl. Trav. Chim. Pays-Bas, 1990, 109,
255–272; (b) G. Gellerstedt and R. A. Northy, Wood Sci. Technol.,
1989, 23, 75–83.
(a) R. Bourbonnais and M. G. Paice, FEBS Lett., 1990, 267,
99–102; (b) R. Bourbonnais and M. G. Paice, Appl. Microbiol.
Biotechnol., 1992, 36, 823–827; (c) R. Bourbonnais, M. G. Paice,
B. Freiermuth, E. Bodie and S. Borneman, Appl. Environ. Micro-
biol., 1997, 63, 4627–4632; (d ) J. Sealey and A. J. Ragauskas,
Enzyme Microbiol. Technol., 1998, 23, 422–426.
employed in the GC analyses. The identity of the products was
confirmed by GC-MS analyses, run on a HP 5892 GC,
equipped with a 12 m  0.2 mm methyl silicone gum capillary
column, and coupled to a HP 5972 MSD instrument, operat-
ing at 70 eV. The substrates were either commercial (Aldrich)
or available from a previous investigation.9,13,16,17 Phthalan
(i.e., o-xylylene oxide; Aldrich) was oxidised to phthalide with
periodic acid in 71% yield;35 mp 72–74 ꢁC (lit.35 72–74 ꢁC).
1H-NMR [d (ppm) in CDCl3 : 5.3 (s, 2H, ArCH2O), 7.4–7.5
(dd, 2H), 7.6–7.7 (d, 1H), 7.9 (d, 1H)].
6
7
Enzyme preparation
8
9
C. Crestini and D. S. Argyropoulos, Bioorg. Med. Chem., 1998,
6, 2161–2169.
M. Fabbrini, C. Galli and P. Gentili, J. Mol. Catal. B: Enzymol.,
2002, 16, 231–240.
Laccase from a strain of Trametes villosa (viz. Poliporus pinsi-
tus) (Novo Nordisk Biotech) was employed. It was purified by
ion-exchange chromatography on Q-Sepharose by elution with
phosphate buffer,9 and an activity of 9000 U mLÀ1 was deter-
mined spectrophotometrically by the standard method with
ABTS.36
10 H.-J. Deussen and C. Johansen, PCT International patent WO
0027204, A1., European Patent Office, Munich, Germany, 2000.
11 H.-P. Call and I. Mucke, J. Biotechnol., 1997, 53, 163–202.
¨
12 (a) A. Potthast, T. Rosenau, C. L. Chen and J. S. Gratzl, J. Org.
Chem., 1995, 60, 4320–4321; (b) A. Majcherczyk, C. Johannes and
A. Huttermann, Appl. Microbiol. Biotechnol., 1999, 51, 267–276;
¨
Enzymatic reactions
(c) C.-L. Chen, A. Potthast, T. Rosenau, J. S. Gratzl, A. G.
Kirkman, D. Nagai and T. Miyakoshi, J. Mol. Catal. B: Enzy-
mol., 2000, 8, 213–219.
The oxidation reactions were performed at room temperature
in stirred water solution (3 mL), buffered at pH 5 (0.1 M in
sodium citrate), containing 4% MeCN to improve the solubi-
lity of some of the substrates, and saturated by bubbling O2
for 30 min prior to the addition of the reagents.9 The concen-
tration of the reagents was: [substrate], 20 mM; [mediator], 6
mM, with 15 units of laccase. The reaction time was 24 h,
an atmosphere of O2 being maintained over the reaction vessel.
Following a conventional workup with ethyl acetate, the molar
amount of the oxidation products was determined by GC
analysis with respect to an internal standard (acetophenone
or p-methoxyacetophenone), suitable response factors being
determined from authentic compounds; the yields were calcu-
lated with respect to the molar amount of substrate.
13 M. Fabbrini, C. Galli, P. Gentili and D. Macchitella, Tetrahedron
Lett., 2001, 42, 7551–7553.
14 E. Fritz-Langhals and B. Kunath, Tetrahedron Lett., 1998, 39,
5955–5956.
15 C. Johannes and A. Majcherczyk, Appl. Environ. Microbiol., 2000,
66, 524–528.
16 P. Baiocco, A. M. Barreca, M. Fabbrini, C. Galli and P. Gentili,
Org. Biomol. Chem., in press.
17 F. d’Acunzo, P. Baiocco, M. Fabbrini, C. Galli and P. Gentili,
Eur. J. Org. Chem., 2002, 4195–4201.
18 (a) A. E. J. de Nooy, A. C. Besemer and H. van Bekkum, Synth-
esis, 1996, 1153–1174; (b) A. Cecchetto, F. Fontana, F. Minisci
and F. Recupero, Tetrahedron Lett., 2001, 42, 6651–6654.
19 M. Fabbrini, C. Galli and P. Gentili, J. Mol. Catal. B: Enzymol.,
2002, 18, 169–171.
20 F. d’Acunzo, P. Baiocco, M. Fabbrini, C. Galli and P. Gentili,
New J. Chem., 2002, 1791–1794.
Chemical oxidations
21 J. Sealey, A. J. Ragauskas and T. J. Elder, Holzforschung, 1999,
53, 498–502.
22 K. Li, R. F. Helm and K.-E. L. Eriksson, Biotechnol. Appl. Bio-
chem., 1998, 27, 239–243.
23 (a) F. d’Acunzo, C. Galli and B. Masci, Eur. J. Biochem., 2002,
269, 5330–5335; (b) G. Cantarella, F. d’Acunzo and C. Galli, Bio-
technol. Bioeng., in press.
24 (a) D. F. McMillen and D. M. Golden, Ann. Rev. Phys. Chem.,
1982, 33, 493–532; (b) Handbook of Chemistry and Physics,
CRC, Cleveland, OH, 74 edn., 1993–1994.
25 K. M. Ervin, S. Gronert, S. E. Barlow, M. K. Gilles, A. G.
Harrison, V. M. Bierbaum, C. H. DePuy, W. C. Lineberger and
G. B. Ellison, J. Am. Chem. Soc., 1990, 112, 5750–5759.
26 E. A. Mayeda, L. L. Miller and J. F. Wolf, J. Am. Chem. Soc.,
1972, 94, 6812–6816.
Reaction of 0.5 mmol of isochroman with 0.5 mmol of
IV
(NH4)2Ce (NO3)6 (viz, CAN) in 7.5 mL of H2O:MeCN 2:1
(v/v) at room temperature for 7 h did not afford any pro-
duct,27 and the ether was quantitatively recovered (GC). The
reaction was repeated in the same mixed solvent, by doubling
the molar amount of CAN (i.e., 1 mmol) and refluxing the
reagents for 7 h.27 The lactone (i.e., 3,4-dihydroxycoumarin)
was obtained in a 5% GC-yield, and a Ca–Cb bond cleavage
product also appeared at the GC-MS, in approximately 10%
yield; the structure of this product was not further investi-
gated. Unreacted isochroman was also recovered (75%).
27 E. Baciocchi, A. Piermattei, C. Rol, R. Ruzziconi and G. V.
Sebastiani, Tetrahedron, 1989, 45, 7049–7062.
Acknowledgements
28 S. Kawai, M. Nakagawa and H. Ohashi, Enzyme Microbiol. Tech-
nol., 2002, 30, 482–489.
29 R. Bourbonnais, D. Leech and M. G. Paice, Biochim. Biophys.
Acta, 1998, 1379, 381–390.
30 H. G. Aurich, G. Bach, K. Hahn, G. Kuttner and W. Weiss,
¨
J. Chem. Res. (M)., 1977, 1544–1566.
Thanks are due to Novo Nordisk Biotech (Denmark) for a
generous gift of laccase. We also thank the EU for financial
support (grant QLK5-CT-1999-01277) to the OXYDELIGN
project.
31 K. Krikstopaitis and J. Kulys, Electrochem. Commun., 2000,
2, 119–123.
32 E. Baciocchi, S. Belvedere, M. Bietti and O. Lanzalunga, Eur.
J. Org. Chem., 1998, 299–302.
References
1
2
R. ten Have and P. J. M. Teunissen, Chem. Rev., 2001, 101,
3397–3413.
A. Messerschmidt, Multi-Copper Oxidases, World Scientific,
Singapore, 1997.
M. Tien and T. K. Kirk, Science, 1983, 221, 661–663.
M. Kuwahara, J. K. Glenn, A. Morgan and M. H. Gold, FEBS
Lett., 1984, 169, 247–250.
33 H. Kajikawa, H. Kudo, T. Kondo, K. Jodai, Y. Honda, M.
Kuwahara and T. Watanabe, FEMS Microbiol. Lett., 2000, 187,
15–20.
34 R. C. Kuhad, A. Singh and K.-E. L. Eriksson, Biotechnology in
the Pulp and Paper Industry, in Advances in Biochemical Engineer-
ing Biotechnology, ed. K.-E. L. Eriksson, Springer, Berlin, vol. 57,
ch. 2, 1997.
3
4
5
(a) P. J. Kersten, B. Kalyanaraman, K. E. Hammel, B.
Reinhammar and T. K. Kirk, Biochem. J., 1990, 268, 475–480;
(b) F. Xu, J. J. Kulys, K. Duke, K. L, K. Krikstopaitis, H.-J. W.
35 S. Yamazaki, Org. Lett., 1999, 1, 2129–2132.
36 B. S. Wolfenden and R. L. Willson, J. Chem. Soc., Perkin Trans.
2, 1982, 805–812.
332
New J. Chem., 2003, 27, 329–332