Paper
RSC Advances
Mineralogy and Metallogeny in Chinese Academy of Sciences
(No. KLMM20150103).
References
1 M. S. Chen and M. C. White, Science, 2010, 327, 566.
2 X. H. Li, X. C. Wang and M. Antonietti, ACS Catal., 2012, 2,
2082.
3 Z. Y. Li, L. R. Hu, Q. Y. Liu, C. G. Ning, H. Chen, S. G. He and
J. N. Yao, Chem.–Eur. J., 2015, 21, 17748.
4 Y. Wang, H. R. Li, J. Yao, X. C. Wang and M. Antonietti,
Chem. Sci., 2011, 2, 446.
5 M. Arshadi, M. Ghiaci, A. A. Ensa, H. Karimi-Maleh and
S. L. Suib, J. Mol. Catal. A: Chem., 2011, 338, 71.
6 D. R. Dreyer, H.-P. Jia and C. W. Bielawski, Angew. Chem., Int.
Ed., 2010, 49, 6686.
Fig. 7 High-resolution XPS spectra of Co 2p regions of fresh and
recycled CoNC-0.5.
7 Q. Yang, W. Y. Wang, Y. X. Zhao, J. J. Zhu and L. H. Wang,
RSC Adv., 2015, 5, 54978.
Table 4 Co content determined by analysis of atomic absorption
spectrometry (AAS)
8 D. X. Yang, T. Jiang, T. B. Wu, P. Zhang, H. L. Han and
B. X. Han, Catal. Sci. Technol., 2016, 6, 193.
9 J. Fan, Y. H. Dai, Y. L. Li, N. F. Zhang, J. F. Guo, X. Q. Yan and
G. D. Stucky, J. Am. Chem. Soc., 2009, 131, 15568.
10 L. L. Geng, M. Zhang, W. X. Zhang, M. J. Jia, W. F. Yan and
G. Liu, Catal. Sci. Technol., 2015, 5, 3097.
Co content (mg)
Catalysta,b
Fresh
Reusedc
1.06
CoNC-0.5
1.13
a
30 mg catalyst. b Catalyst was immersed in l mol Lꢁ1 HNO3 solution at
60 ꢀC for 24 h to detach metal particles. c The catalyst has been recycled
for three times.
11 C. Chen, S. Shi, M. Wang, H. Ma, L. P. Zhou and J. Xu, J.
Mater. Chem. A, 2014, 2, 8126.
12 C. L. Zhang, L. H. Kang, M. Y. Zhu and B. Dai, RSC Adv., 2015,
5, 7461–7468.
13 N. Fechler, G. A. Tiruye, R. Marcilla and M. Antonietti, RSC
Adv., 2014, 4, 26981–26989.
14 X. L. Yuan, M. Zhang, X. D. Chen, N. H. An, G. Liu, Y. Liu,
W. X. Zhang, W. F. Yan and M. J. Jia, Appl. Catal., A, 2012,
439, 149.
and aggregation. To sum up, those three aspects above are
responsible for superior reusability of the sample.
15 Y. J. Gao, G. Hu, J. Zhong, Z. J. Shi, Y. S. Zhu, D. S. Su,
J. G. Wang, X. H. Bao and D. Ma, Angew. Chem., Int. Ed.,
2013, 52, 2109.
16 A. B. Chen, Y. F. Yu, R. J. Wang, Y. H. Yu, W. W. Zang, P. Tang
and D. Ma, Nanoscale, 2015, 7, 14684.
17 H. Yu, F. Peng, J. Tan, X. W. Hu, H. J. Wang, J. Yang and
W. X. Zheng, Angew. Chem., 2011, 123, 4064.
18 X. M. Ning, H. Yu, F. Peng and H. J. Wang, J. Catal., 2015,
325, 136.
19 X. Liu, Y. Zhou, W. Zhou, L. Li, S. Huang and S. Chen,
Nanoscale, 2015, 7, 6136.
5. Conclusions
In this work, cobalt-coordinated N-doped carbon is prepared by
pyrolyzing cobaltporphyrin under N2 atmosphere with casein as
supplementary nitrogen source. The CoNC catalyst originated
from cobaltporphyrin has high metal content, dispersion and
small particle size. The catalyst shows promising catalytic
activity for C–H bond oxidation with Co–Nx plays the role of
active site. Moreover, it is highly stable and can be recycled
several times without losing its activity. Thus, this study has
demonstrated that pyrolysis of cobaltporphyrin with casein as
supplementary nitrogen source might be a viable route to
design efficient and durable CoNC catalysts with small particle
size, high metal content for C–H bond activation.
20 C. Lavorato, A. Primo, R. Molinari and H. Garcia, Chem.–Eur.
J., 2014, 20, 187.
21 K. L. Wang, H. Wang, S. Ji, H. Feng, V. Linkov and
R. F. Wang, RSC Adv., 2013, 3, 12039.
22 F. Pan, Z. Cao, Q. Zhao, H. Liang and J. Zhang, J. Power
Sources, 2014, 272, 8.
Acknowledgements
´
´
23 A. Primo, E. Sanchez, J. M. Delgado and H. Garcıa, Carbon,
The authors gratefully acknowledge the nancial support from
2014, 68, 777.
National Natural Science Foundation of China (No. 21103045, 24 C. Z. Guo, W. Liao and C. G. Chen, J. Power Sources, 2014,
1210040, 1103312), the Fundamental Research Funds for the 269, 841.
Central Universities, the State Key Laboratory of Heavy Oil in 25 H. Yang, H. Li, H. Wang, S. Ji, J. Key and R. Wang, J.
China (No. SKCHOP201504) and the Key Laboratory of
Electrochem. Soc., 2014, 161, 795.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 75707–75714 | 75713