LETTER
Substituted Methyl Carbapenems and Benzocarbacephems
1245
Ph
Ph
(7) (a) Jana, S.; Guin, C.; Roy, S. C. Tetrahedron Lett. 2005, 46,
1155. (b) Hersant, G.; Ferjani, M. B. S.; Bennett, S. M.
Tetrahedron Lett. 2004, 45, 8123.
(8) (a) Fernández-Mateos, A.; Mateos Burón, L.; Martín de la
Nava, E. M.; Rabanedo Clemente, R.; Rubio González, R.;
Sanz González, F. Synlett 2004, 2553. (b) Fernández-
Mateos, A.; Martín de la Nava, E. M.; Pascual Coca, G.;
Ramos Silvo, A.; Rubio González, R. Org. Lett. 1999, 1,
607.
O
O
O
MeO
O
TiCp Cl
MeO
O
TiCp2Cl
2
OH
TiCp2Cl
N
N
TiCp Cl
2
(a)
III
IV
(
b)
H3O
Ph
Ph
O
OH
OH
MeO
O
MeO
O
TiCp2Cl
(9) Fernández-Mateos, A.; Mateos Burón, L.; Rabanedo
Clemente, R.; Ramos Silvo, A. I.; Rubio González, R.
Synlett 2004, 1011.
O
N
N
9a,b
V
(10) (a) Ruano, G.; Grande, M.; Anaya, J. J. Org. Chem. 2002,
6
7, 8243. (b) Ruano, G.; Martiáñez, J.; Grande, M.; Anaya,
Scheme 4 Proposed mechanism explaining the formation of com-
pounds 9a,b
J. J. Org. Chem. 2003, 68, 2024. (c) Anaya, J.; Fernández-
Mateos, A.; Grande, M.; Martiáñez, J.; Ruano, G.; Rubio-
González, M. R. Tetrahedron 2003, 59, 241.
1H NMR spectra of compounds 11a and 11b, indicates
that the rearrangement of these b-hydroxyketones has not
occurred.
(11) Monleón, L. M.; Grande, M.; Anaya, J. Tetrahedron 2007,
63, 3017.
(
12) The stereochemistry depicted in Schemes 1 and 3 for the
oxirane ring in epoxides 1a,b, 8a,b, and 10a,b were
tentatively proposed by comparison of the respective
The presence of the benzyl group in the hydroxy-
benzylketones 7 (Scheme 2) may probably be the reason
for the elimination of benzaldehyde in the radical cycliza-
tion of epoxynitriles 1, 3, and 4. The C4–C8 bond energies
in compounds 11a and 11b with a hydroxymethyl group
at C4 are larger than those of the b-hydroxy-b-phenyl-
ketones 7.
1
polarities and H NMR data with those of pure 4-(1-methyl-
10b
2
-phenyloxiranyl)-b-lactams Ia and Ib (Figure 1). This
will be described elsewhere.
R
O
Ph
H
H
MeO
O
O
5
6
3
4
O
N
CO2Me
In summary, we have analyzed the reactivity of 4-(1-
O
O
methyl-2-phenyloxiranyl)-b-lactams with Cp TiCl using
2
R
Ia: 5α,6α-epoxy
Ib: 5β,6β-epoxy
cyano and formyl groups as radical aceptors and the
shared aspect for these reactions is the regioselectivity in
the homolytic cleavage C5–O of the oxirane ring. The
benzaldehyde elimination observed in the above exam-
ples can be exploited as a new route to 4-methylcarbapen-
Figure 1
13) Typical Procedure
(
A solution of the specific epoxide (1.0 mmol) in THF (17.0
mL) was added dropwise to a green suspension of Cp TiCl,
16
ems (stable antibiotics to kidney dehydropeptidase) and
-substituted benzocarbacephems (b-lactamase inhibi-
2
5
generated from titanocene dichloride (548 mg, 2.2 mmol)
and activated zinc granules (262 mg, 4.0 mmol), in anhyd
and strictly deoxygenated THF (12.5 mL). The reaction
mixture was stirred at r.t. until a color change from green to
orange was observed, and then the reaction was quenched
with 10% v/v aq KH PO (30.0 mL). The aqueous phase was
1
7
tors). Further studies on the mechanistic and stereo-
chemical implications of this reaction are underway and
will be reported in due course.
2
4
Acknowledgment
extracted with EtOAc and the organic combined extracts
®
were filtered through Celite , dried (anhyd Na SO ) and
2
4
Financial support for this work from the Ministerio de Educación y
Ciencia of Spain (CTQ2005-05026/BQU) and the Junta de Castilla
y León (SA070/03) is gratefully acknowledged. We would also like
to thank the Ministerio de Educación y Ciencia of Spain for a grant
to L.M.M.
concentrated in vacuo. The crude material obtained was
purified by column chromatography on silica gel.
14) All these compounds are racemic mixtures but only one
stereoisomer is depicted for simplicity. The C3-, C4- or C5-
configuration for bi- or tricyclic b-lactams is based on
spectroscopic data and the configuration proposed for the
starting material. This will be described elsewhere.
Selected Data for Cyclization Products
(
References and Notes
(
(
1) Gansäuer, A.; Bauer, D. J. Org. Chem. 1998, 63, 2070.
2) Spencer, R. P.; Cavalloro, C. L.; Schwartz, J. J. Org. Chem.
Carbapenem 2: R
f
= 0.50 (7:3 benzene–EtOAc). IR (neat):
–
1 1
n = 3500, 1774, 1755 cm . H NMR (400 MHz, CDCl
):
3
1999, 64, 3987.
d = 1.12 (3 H, s), 1.53 (3 H, s), 1.21 (3 H, d, J = 7.1 Hz), 2.73
(3) Qian, Y.; Li, G.; Zheng, X.; Huang, Y. Z. Synlett 1991, 489.
(4) Zhang, Y.; Yu, Y.; Bao, W. Synth. Commun. 1995, 25, 1825.
(5) Jana, S.; Roy, S. C. Tetrahedron Lett. 2006, 47, 5949.
(6) (a) Gansäuer, A.; Lauterbach, T.; Narayan, S. Angew. Chem.
Int. Ed. 2003, 42, 3687. (b) Gansäuer, A.; Bluhm, H. Chem.
Rev. 2000, 100, 2771. (c) Gansäuer, A.; Bluhm, H.;
(1 H, dq, J = 7.1, 8.7 Hz), 3.52 (3 H, s), 3.62 (1 H, dd,
1
3
J = 4.0, 8.7 Hz), 4.68 (1 H, d, J = 4.0 Hz). C NMR (100
MHz, CDCl ): d = 12.5, 21.0, 23.4, 41.0, 58.9, 59.1, 64.4,
83.4, 170.9, 218.0. HRMS–FAB: m/z calcd for
3
+
C
H15NO
Na [M + 23]: 220.0944; found: 220.0949.
10
3
Benzocarbacephem 5: R = 0.28 (95:5 benzene–EtOAc). IR
f
–
1 1
Pierobon, M. J. Am. Chem. Soc. 1998, 120, 12849.
(neat): n = 1759, 1685 cm . H NMR (400 MHz, CDCl ):
3
d = 1.26 (3 H, d, J = 6.5 Hz), 3.01 (1 H, dq, J = 6.5, 12.8 Hz),
3.68 (3 H, s), 3.98 (1 H, dd, J = 4.5, 12.8 Hz), 4.79 (1 H, d,
(d) Nugent, W. A.; RajanBabu, T. V. J. Am. Chem. Soc.
1994, 116, 986.
Synlett 2007, No. 8, 1243–1246 © Thieme Stuttgart · New York